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HOMEWORK 4 SOLUTIONS

Exercise 4.7 Given a complex square matrix A, the definition of the structured singular value
function is as follows.
(4) 1
A = —
pa MinAca{mas(A)| det(I — AA) = 0}

where A is some set of matrices.

a) If A = {al : o € C}, then det(I — AA) = det(I — aA). Here det(I — aA) = 0 implies that
there exists an « # 0 such that (I — @A)z = 0. Expanding the left hand side of the equation yields
= aAr — éx = Ax. Therefore é is an eigenvalue of A. Since 042 (A) = |af,

| 1
arglgélg{amaz(A)!det(I —AA) =0} =laf = |m|'

Therefore, pa(A) = |Amaz(A4)].

b) If A = {A € C"*"}, then following a similar argument as in a), there exists an x # 0 such that
(I — AA)z = 0. That implies that

r=AAr = |zl = [|AAz]]2 < [[All2] Azl

L Al
— < < Umax(A)
[Afl2 = [lz]l2
1
- ———— < opmaz(A).
Umaa:(A> - ( )

Then, we show that the lower bound can be achieved. Since A = {A € C™*"}, we can choose A
such that

1
Omax (A)

A=V ' U'.
0
where U and V are from the SVD of A, A = UXV’. Note that this choice results in
1 0
0
I—-AA=1-V ) V=V ] 1%
0 1

which is singular, as required. Also from the construction of A, 0. (A) = Uma:.lr ) Therefore,

MA(A) = Opmax(A).




¢) If A = {diag(an,- -+ ,an)|a; € C} with D € {diag(dy,--- ,dy)|d; > 0}, we first note that D1
exists. Thus:

det(I — AD7'AD) = det(I — D™ 1AAD)
det(D~' — D7'AA)D)
et(D™' — D7YAA)det(D)
(

(

(

I
2

det(D™YI — AA))det(D)
det(D~ 1)det([ AA)det(D)
= det(I — AA).

Where the first equality follows because A and D~! are diagonal and the last equality holds because
det(D™1) = 1/det(D). Thus, pa(A) = ua(D1AD).

Now let’s show the left side inequality first. Since A; C A, , A; = {al|la € C} and A, =
{diag(ai,- - ,ap)}, we have that

. B 0l B _
Anélill{omax(Aﬂdet(I AA) 0}_Ané1£2{amax(A)]det(I AA) =0},

which implies that

pa, (A) < pa, (A).
But from part (a), ua, (A) = p(A), so
p(A) < pa,(A).

Now we have to show the right side of inequality. Note that with A; = {A € C}, we have A, C As.
Thus by following a similar argument as above, we have

Anéln {Omaz(A)| det(I — AA) 0}_Ané1£3{amax(A)|det(I AA) =0}

Hence,

na,(A) = pa,(DT'AD) < pp, (DTVAD) = 0maa(DTIAD).

Exercise 4.8 We are given a complex square matrix A with rank(A) = 1. According to the SVD
of A we can write A = uv’ where u, v are complex vectors of dimension n. To simplify computations
we are asked to minimize the Frobenius norm of A in the definition of pa(A). So

(4) 1

A =

HA ™ minaca{ [A][F | det(I — AA) = 0}

A is the set of diagonal matrices with complex entries, A = {diag(é1,---,0,)|d; € C}. Introduce
the column vector § = (01,--- ,d,)7 and the row vector B = (u1v,-- ,u,v}), then the original

problem can be reformulated after some algebraic manipulations as

1
A =
#a(4) mingegnd{ ||6||2 | BS = 1}



To see this, we use the fact that A = v/, and (from excercise 1.3(a))

det(I — AA) = det(I — Au')
= det(1 —v'Au)
= 1-7Au

Thus det(I — AA) =0 implies that 1 — v’Au = 0. Then we have

1 = JVAu
51 (51
= (v v )
On, U,
01
= (vlul v;un) :
O
= B¢

Hence, computing pa(A) reduces to a least square problem, i.e.,
IAnig{HAHF\ det(I — AA) =0} < min||d]|2 s.t. 1 = Bé.
€a

We are dealing with a underdetermined system of equations and we are seeking a minimum norm
solution. Using the projection theorem, the optimal 6 is given from 6° = B'(BB’)~!. Substituting
in the expression of the structured singular value function we obtain:

In the second part of this exercise we define A to be the set of diagonal matrices with real entries,

A = {diag(61,--- ,0,)[0; € R}. The idea remains the same, we just have to alter the constraint
equation, namely Bd = 1+0j. Equivalently one can write Dé = d where D = < ﬁﬂi((g)) ) and d =

0
Substituting in the expression of the structured singular value function we obtain:

1 ) Again the optimal ¢ is obtained by use of the projection theorem and §° = D'(DDT)~1d.

1

nald) = DT g

Exercise 5.1 Suppose that A € C™*"™ is perturbed by the matrix £ € C™*™.

1. Show that

|Umax(A + E) - Umaa:(A)| < O'maz(E)'



Also find an F that achieves the upper bound.

Note that

A=A+E-E—|A|=[A+E-E|<|[[A+E||+[E] = [|A] - A+ E]| <[ E].
Also,

(A+E)=A+E = [[A+E| <[ A + [|E]| = [|A+ E] = [|A] < [I£]]

Thus, putting the two inequalities above together, we get that

A+ El = (Al < £l

Note that the norm can be any matrix norm, thus the above inequality holds for the 2-induced
norms which gives us,

‘Umax(A + E) - Umaa:(A)’ < Umaz(E)'

A matrix F that achieves the upper bound is

where U and V form the SVD of A. Here, A+ E = 0, thus 0ye.(A + E) =0, and

0+ Omaz(A)| = Omaz(E)
is achieved.

. Suppose that A has less than full column rank, i.e., the rank(A) < n, but A + E has full
column rank. Show that

Umzn(A + E) < O'ma:c(E)‘

Since A does not have full column rank, there exists x # 0 such that

[(A+ E)zlla _ [[Ex|2

lzfla 2l

Az =0 — (A+E)x = Ex — |[(A+E)x|]2 = || Fx|2 — < ||E|l2 = omaz(E).

But,
[(A+ E)z|2

Omin(A+ E) <
A+E) < Tk



as shown in chapter 4 (please refer to the proof in the lecture notes!). Thus

Umzn(A + E) < Uma:c(E)-

Finally, a matrix E that results in A+ E having full column rank and that achieves the upper
bound is

0 0 0
_ 0 JT+1 /
E=Ulv 0 0 o |V
0
for
cr 0 0 O
0 0 O
A == U O Ur V/
0
Note that A has rank r < n, but that A + E has rank n,
op 0 O 0 0
0 0 0 0
0 0 o O 0
A+E=U 0 0 0 o1 0 a
0 0 0 .. o1
0

It is easy to see that op,in(A + E) = 0,41, and that o (E) = 0p41.

The result in part 2, and some extensions to it, give rise to the following procedure (which
is widely used in practice) for estimating the rank of an unknown matrix A from a known
matrix A+ E, where || E||2 is known as well. Essentially, the SVD of A+ FE is computed, and
the rank of A is then estimated to be the number of singular values of A + F that are larger
than || E2.



Exercise 5.2 Using SVD, A can be decomposed as
o1

A=U v,
ok
0

where U and V' are unitary matrices and k > r + 1. Following the given procedure, let’s select the
first r+1 columns of V' : {v1,ve, -+ ,v,41}. Since V' is unitary, those v;’s are orthonormal and hence
independent. Note that {vi,va, -+ ,vr41, - vn} span R", and if rank(E) = r, then exactly r of
the vectors, {vi,v2, -+ ,Vp41, - Un}, span R(E') = N*(E). The remaining vectors span N'(E).
So, given any r + 1 linearly independent vectors in R", at least one must be in the nullspace of E.
That is there exists coefficients ¢; for ¢ = 1,--- ,r + 1, not all zero, such that

E(civy + covg + -+ ¢pp10r41) = 0.
These coefficients can be normalized to obtain a nonzero vector z, ||z||2 = 1, given by

r+1 (631

z:Zaivi:(vl 1)7«+1)
i=1

Qpr41
and such that £z = 0. Thus,
o101
09202
- Ul, - r+1 :
(A—E)z=Az=U% : (Z aivi> =U| orr10541 (1)
- UrJrl, - =1 0
0
By taking 2-norm of both sides of the above equation,
o1 o1
02002 02002
I(A—E)z|la = | U| ory10041 |ll2=1| or+10041 |ll2 ( since U is a unitary matrix)
0 0
0 0

r+1 % r+1 %
= (Z !Uz’ai2> > oyl (Z az’lQ) : (2)
i=1 i=1

But, from our construction of z,

aq aq r+1
llB=1= (o v ) [ 2 [IB=1=0] ¢ [B=)laf=1
Q41 Qr+1 =1



Thus, equation(2) becomes
(A= E)zll2 > orqa.

Finally, [|[(A — E)z|j2 < ||A — E||2 for all z such that ||z||2 = 1. Hence
A= Ell2 > 041
To show that the lower bound can be achieved, choose

01

Opr

FE has rank r,

A-E=U Ori1 V.

Ok

and ||A — EHQ = Op+1-

Exercise 6.1 The model is linear one needs to note that the integration operator is a linear
operator. Formally one writes

S(auy + Pug)(t) = /000 e =) (quy (s) + Busa(s))ds

:a/o e~y (s) +5/ (s)

= a(Sur)(t) + B(Suz)(t)

It is non-causal since future inputs are needed in order to determine the current value of y. Formally
one writes

(PpSu)(t) = (PpSPru)(t) + Pr </TOO e_(t_s)u(s)ds)

It is not memoryless since the current output depends on the integration of past inputs. It is also
time varying since

0
(Soru)(t) = (opSu)(t) + /_T e~ T=9y(s)ds

one can argue that if the only valid input signals are those where u(t) = 0 if ¢ < 0 then the system
is time invariant.



Exercise 6.4(i) linear , time varying , causal , not memoryless

(ii) nonlinear (affine, tranlated linear) time varying , causal , not memoryless

(iii) nonlinear, time invariant , causal, memoryless

(iv) linear, time varying , causal, not memoryless

(1),(ii) can be called time invariant under the additional requirement that u(t) =0 for t < 0
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