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Homework 3 Solutions 

Exercise 3.2 i) We would like to minimize the 2-norm of u, i.e., �u�2 . Since yn is given as 2 

n

yn = hiun−1 

we can rewrite this equality as 

� 

i=1 

⎤
⎡


yn = h1 h2 hn· · · 
⎢⎢⎢⎣


un−1 

un−2 
.
. . 
u0 

⎥⎥⎥⎦


We want to find the u with the smallest 2-norm such that 

ȳ = Au. 

where we assume that A has a full rank (i.e. hi =� 0 for some i, 1 ≤ i ≤ n). Then, the solution 
reduces to the familiar form: 

û = A�(AA�)−1 ȳ. 
n h2 

iBy noting that AA� =
 , we can obtain ûj as follows; i=1 

ûj =

hj ȳ
n h2 , 
i=1 i 

for j = 0, 1, · · · , n − 1.


ii) a) Let’s introduce e as an error such that yn = y − e. It can also be written as y − yn = e. Then 
now the quantity we would like to minimize can be written as 

r(y − yn)
2 + u0

2 + · · · + un
2 
−1 

where r is a positive weighting parameter. The problem becomes to solve the following minimization 
problem : 

n

û = arg min ui 
2 + re 2 = arg min(�u�22 + r�e�22), u u 

i=1 

from which we see that r is a weight that characterizes the tradeoff between the size of the final 
error, ȳ − yn, and energy of the input signal, u. 

In order to reduce the problem into the familiar form, i.e, �y − Ax�, let’s augment 
√
re at the 

bottom of u so that a new augmented vector, ũ is ⎤
⎡

u
 ⎦
⎣
ũ =
 ,
√· · ·
re 

1 



� � � � 

� 

� � � � 

� � 

� � � � � � 

This choice of ũ follows from the observation that this is the ũ that would have �ũ�22 = �u�22 + re2 , 
the quantity we aim to minimize . 

Now we can write y as follows ⎡ ⎤ � � u 
y = A ..

. 1 ⎣ ⎦ = Ãũ = Au + e = yn + e.√
r √· · ·

re 

Now, û can be obtained using the augmented A, Ã, as 

û = Ã�(ÃÃ�)−1 y = 
A
1

� 
AA� +

1 
y. 

r√
r 

By noting that 
n

1 � 1 
AA� + = hi 

2 + , 
r r 

i=1 

we can obtain ûj as follows 

ûj = � n 
hj 

h

y 
2 1 for j = 0, · · · , n − 1. 

i=1 i + r 

ii) b) When r = 0, it can be interpreted that the error can be anything, but we would like to 
minimize the input energy. Thus we expect that the solution will have all the ui�s to be zero. In 
fact, the expression obtained in ii) a) will be zero as r 0. On the other hand, the other situation →
is an interesting case. We put a weight of ∞ to the final state error, then the expression from ii) 
a) gives the same expression as in i) as r → ∞. 

Exercise 3.3 This problem is similar to Example 3.4, except now we require that ṗ(T ) = 0. We 
t

can derive, from x(t) = p̈(t), that p(t) = x(t) ∗ tu(t) = (t − τ )x(τ)dτ where ∗ denotes convolution 0 
and u(t) is the unit step, defined as 1 when t > 0 and 0 when t < 0. (One way to derive this 
is to take x(t) = p̈(t) to the Laplace domain, taking into account initial conditions, to find the 
transfer function H(s) = P (s)/X(s), hence the impulse response, h(t) such that p(t) = x(t) ∗ h(t)).� t � T
Similarly, ṗ(t) = x(t) ∗ u(t) = x(τ)dτ . So, y = p(T ) = (T − τ )x(τ)dτ and 0 = ṗ(T ) = � T 

0 � T 
0 

x(t) ∗ u(t) = 0 x(τ)dτ . You can check that < g(t), f(t) >= 0 g(t)f(t)dτ is an inner product on 
the space of continuous functions on [0, T ], denoted by C[0, T ], which we are searching for x(t). So, 
we have that y = p(T ) =< (T − t), x(t) > and 0 = ṗ(T ) =< 1, x(t) >. In matrix form, 

y < T − t, x(t) > � � 
0

= 
< 1, x(t) > 

=� T − t 1 , x(t) � 

where � ., . � denotes the Grammian, as defined in chapter 2. Now, in chapter 3, it was shown 
that the minimum length solution to y =� A, x �, is x̂ = A � A, A �−1 y. So, for our problem, 

x̂ = 
� 
T − t 1 

� 
� 
� 
T − t 1 

� 
, 
� 
T − t 1 

� 
�−1 y 

0 
. 

Where, using the definition of the Grammian, we have that: 

T − t 1 , T − t 1 
< T − t, T − t > < T − t, 1 >

.� �= 
< 1, T − t > < 1, 1 > 
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No� w, we can use the definition for inner product to find the individual entries, < T  t, T  t >=  T	  
(T − t)2dt = T 3

− −
/3, < T − t, 1 

� T
>= (T − t)dt = T 2/2, and < 1, 1 >= T . Plugging these in, one 0 0 

can simplify the expression for and 12y  x̂ obtain x̂(t) = 1
2 [ − t ] for t ∈ [0, T ].

T 2 T 

Alternatively, we have that x(t) = p̈(t). Integrating both sides and taking into account that  	  
p(0) = 0 and  t t

ṗ(0) �= 0,  
we hav  t

e p(t) = 1 � x(τ)dτ dt = f(t )dt . Now, we use the integration 
t   1 0 0 0 1

u   1

by parts formula,  t t
dv = uv|t0 −	 v

�
 du,

�
 with u = f(t1)

�
= 
�

1 x(τ)dτ, and dv = dt ; hence du 0 0 1 =0  t  
= t�df(t1) = x(t1)dt1 and v t1. Plugging in and simplifying we get that p(t) = 

� �
1� x(τ )dτ dt

 1 = 0 0 
t	  T
(t − τ)x(τ� )dτ. Thus, y = p(T ) = (T − τ)x(τ)dτ =< T − t, x(t) > . In addition, we have that 0	  0

T
0 = ṗ(T ) = x(τ)dτ =< 1, x(t) > . That is, we seek to find the minimum length x(t) such that 0 

y = < T − t, x(t) > 

0 = < 1, x(t) > . 

Recall that the minimum length solution x̂(t) must be a linear combination of T − t and 1, i.e., 
x̂(t) = a1(T − t) + a2. So, 

  
y = < T − t, T 

a 2
1(T − t) + a2 > = a1 

�
(�T − t) dt + T 

a2 (T  t)dt = a T 3 T 2 

1 + a2 0 0 − 3 2 
T  2 

0 = < 1, a1(T − t) + a2 > = (a1(T − t) +

�
 a T

2)dt = a1 + a2T. 0	 2 

This is a system of two equations and two unknowns, which we can rewrite in matrix form: �
	
� � 

T 3 T 2   
y a  1 = 3 2
0 T	2 

T 

� �
a2 

�
, 

2 

So, � � �  
T 3 T 2 −1  

a1 y 
= 3 2 . 

a T 2 
2 T 0 

2 

� � �

Exercise 4.1 Note that for any v ∈ Cm, (show this!) 

�v�∞ ≤ �v�2 
√

≤ m�v� . (1)∞

Therefore, for A ∈ Cm×n with x ∈ Cn 

�Ax�2 
√ √

≤ Axm�Ax�∞ → for x = 0, �Ax�2 m� �∞ .�x�2 
≤ �x�2 

But, from equation (1), we also know that 1 ≥ 1 . Thus, �x�∞ �x�2 

�Ax�2	
√
m�Ax

√
� m Ax≤ ∞ �≤ ∞  

� √
m

x 2 x 2  
�A

x
≤ � , (2)

� � � � � � ∞
∞

Equation (2) must hold for all x = 0, therefore 
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Axmax =0
� �2 

x  = A�2 
√

� ≤ m�A� .�x�2 
∞

To prove the lower bound √1 �A�  ≤ �A�2, reconsider equation (1): 
n ∞

Ax  Ax
√
n Ax�Ax� 2 

√
n Ax

∞ Ax
� �≤ � �2 → for x = 0, 

� �∞ �
A 2 

� � � √
x 2 

≤
x 2 

≤ � � → ∞ 

x 2 
≤ 2 

x 2 
≤ n�A�

� � � � � � � � 2. 

(3) 

√
But, from equation (1) for x ∈ n Cn , 

2 
≥ 1 . So, �x� �x�∞ 

Ax  
√

� � n Ax∞  
� �∞ √

≤ A�
�x

�
� 2 

 
≤ n

∞ �x�2 

for all x = 0 Axincluding x that makes � �∞ maximum, so, �x�∞ 

�Axmaxx=0 
�∞ = A�  x  

√
�∞ � �∞ ≤ n�A�2, 

or equivalently, 

1 √ A
n
� �∞ ≤ �A�2. 

Exercise 4.5 Any m × n matrix A, it can be expressed as � 
Σ 0 

A = U
0 0 

� 

V �,

where U and V are unitary matrices. The “Moore-Penrose inverse”, or pseudo-inverse of A, 
denoted by A+, is then defined as the n × m matrix 

A+ = V

� 

U �. 
0 0 

� 
Σ−1 0 

 w  a) No we have to show that A+A and AA+ are symmetric, and  that AA+A = A and A+AA+ = 
+ A . Suppose that Σ is a diagonal invertible matrix with the dimension of r × r. Using the given 

definitions as ell as the fact  w that for a unitary matrix U , U �U = UU � = I, we have 

    
+ 

�
Σ 0 

AA = U 
0 0 

 
Σ 0 

�
 Σ

V �V 
 � � � 

� −1 0 
U �

0 0
 

Σ−1 0 

�
= U I U �

0 0 0 0 
 

�
� � 

Ir  
= U ×r 0

 U �,
0 0 
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which is symmetric. Similarly, �    
+ Σ−1 0 Σ 0 

A A = V U

 

�
�U V �

 � 0 0 � � 0 0 
  

 Σ 1 0 Σ

�
0 

�
−

= V I
 

�
V �

0 0 0 0
  
I 0 

= 

�
r  V ×r V �
0 0 

�

which is again symmetric.

The facts derived above can be used to show the other two.


  
+ +

�
Ir r 0 

AA A = (AA )A = U ×
�
U �A � � 0

 
0

� 0 
  

Ir r  Σ 0 
= U × U �U 

0  0
  

�
V �

0 0 

Σ 0 
= U V �

0 0 

= A.

�
 

�

Also, 

  

A+AA+  Ir r 0  = (A+A)A+ = V

�
+

 

�
× V �A

 

I 0 
= rV

�
×r 

0 0 
 

 Σ 1 0 

� 0 0
   

1 0 
V �V U �

0 0 
 

�
Σ− �

−
= V

� �
U �

0 0 
 = A+. 

b) We have to show that when A has full  column rank then A+ = (A�A)−1A�, and that when A 
has full row rank then A+ � 1 = A�(AA )− . If A has full column rank, then we know that m ≥ n, 
rank(A) = n, and 

Σ
   n×n = U

�  

A V �. 
0 

�
Also, as shown in 2, when A has full column rank,  chapter (A�A)−1 exists. Hence 

 � � �  
 1 

1  
�

 Σ �
�
V �
�−

U  
�  

 (A�A)− A� = V Σ�  0 U V Σ� 0 U �
0 � 1      = V Σ�ΣV �

−
V Σ� 0 U �

�
  

= V  (Σ�Σ)−1

�
V �V 

 

�
Σ� 0 

 

�
U � 

  � −1  = V (Σ Σ)

� ��
Σ� 0 

�
U � 

= V ( Σ−1 0 )U � 

= A+ . 

5 



� � 

� � 

� � 

� � 

� � 

Similarly, if A has full row rank, then n ≥ m, rank(A) = m, and 

A = U Σm×m 0 V �. 

It can be proved that when A has full row rank, (A�A)−1 exists. Hence, � � � � � �
A�(AA�)−1 = V 

Σ� 
U � U 

� 
Σ 0 

� 
V �V 

Σ� 
U �

−1 

0 0 

= V 
Σ� 

U � � UΣΣ�U � �−1 

0 

= V 
Σ� 

U �U(ΣΣ−1)U �
0 

Σ−1 
= V U �

0 

= A+ . 

c) Show that, of all x that minimize �y − Ax�2, the one with the smallest length �x�2 is given by 
x̂ = A+y. If A has full row rank, we have shown in chapter 3 that the solution with the smallest 
length is given by 

x̂ = A�(AA�)−1 y, 

and from part (b), A�(AA�)−1 = A+ . Therefore 

x̂ = A+ y. 

Similary, it can be shown that the pseudo inverse is the solution for the case when a matrix A 
has a full column rank (compare the results in chapter 2 with the expression you found in part (b) 
for A+ when A has full column rank). 

Now, let’s consider the case when a matrix A is rank deficient, i.e., rank(A) = r < min(m, n) 
where A ∈ Cm×n and is thus neither full row or column rank. Suppose we have a singular value 
decomposition of A as 

A = UΣV �, 

where U and V are unitary matrices. Then the norm we are minimizing is 

�Ax − y� = �UΣV �x − y� = �U(ΣV �x − U �y)� = �Σz − U �y�, 

where z = V �x, since � · � is unaltered by the orthogonal transformation, U . Thus, x minimizes 
�Ax − y� if and only if z minimizes �Σz − c�, where c = U �y. Since the rank of A is r, the matrix Σ 
has the nonzero singular values σ1, σ2, , σr in its diagonal entries. Then we can rewrite �Σz −c�2 · · · 
as follows: 

r n

�Σz − c�2 = (σizi − ci)
2 + ci 

2 . 
i=1 i=r+1 

It is clear that the minimum of the norm can be achived when zi = σ
ci
i 
for i = 1, 2, , r and· · · 

the rest of the zi’s can be chosen arbitrarily. Thus, there are infinitely many solutions ẑ and the 
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solution with the minimum norm can be achieved when zi = 0 for i = r +1, r +2, · · · , n. Thus, we 
can write this ẑ as 

z = Σ1c, 

where �  −1 Σ
Σ r 0

1 = 

0 0


�
and Σr is a square matrix with nonzero singular values in its diagonal in decreasing order. This 
value of z also yields the value of x of minimal 2 norm since V is a unitary matrix. 
Thus the solution to this problem is 

x̂ =   V z = V Σ1c = V Σ1U
�y = A+y. 

It can be easily  shown that this choice of A+ satisfies all the conditions, or definitions, of pseudo 
inverse in a). 

Exercise 4.6. a) Suppose A ∈ Cn

m has full column rank. Then QR factorization for A can be


easily constructed from SVD: �  
Σ

   n A = U

�
V �

0 

 where Σn is a n×n diagonal matrix with singular values on the diagonal. Let Q = U and R = ΣnV �

and we get the QR factorization. Since Q is an orthogonal matrix, we can represent any Y ∈ Cm
p 

as  
Y

Y 1= Q 

�
Y2 

�
Next   

�Y − AX�2 Y1 R 2 Y1  RX 2
F
 = �Q


�
 Q X 
F = Q


−
Y2 

�
−

�
0 

�
� �

�
Y2 

�
�
F

Denote 

 

�
Y2 

� 
Y1  RX 

D =
−

and note that multiplication by an orthogonal matrix does not change Frobenius norm of the 
matrix: 

�QD�2F
 = tr(D�Q�QD) = tr(D�D) = � 2 D�F 

Since Frobenius norm squared is equal to sum of squares of all elements, square of the Frobenius 
norm of a block matrix is equal to sum of the squares of Frobenius norms of the blocks: �  

Y −�
 1  RX

�
�2
   RX

Y F = 
2

�Y1 



− �2 + �Y 2
2�  

F F 

Since Y2 block can not be affected by choice of X matrix, the problem reduces to minimization of 
�Y 2

1 − RX�F . Recalling that R is invertible (because A has full column rank) the solution is 

X = R−1Y1 
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b) Evaluate the expression with the pseudoinverse using the representations of A and Y from part 
a): � � �� � � � � � 
A�A 

�−1 
A�Y = 

� 
R� 0 

� 
Q�Q

R 
−1 � 

R� 0 
� 
Q�Q

Y1 = R−1 � R� �−1 � 
R� 0 

� Y1 = R−1Y10 Y2 Y2 

From 4.5 b) we know that if a matrix has a full column rank, A+ = (A�A)−1 A�, therefore both 
expressions give the same solutions. 
c) � � � � 

Y A �Y − AX�2 + �Z − BX�2 2 
F F = � 

Z 
− 

B
X�
F 

A 
Since A has full column rank, also has full column rank, therefore we can apply results 

B 
from parts a) and b) to conclude that �� � � �� � � � 

A 
� 

A 
−1 � 

A 
� 

Y � �−1 � � 
X = = A�A + B�B A�Y + B�Z 

B B B Z 
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