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HOMEWORK 3 SOLUTIONS

Exercise 3.2 i) We would like to minimize the 2-norm of u, i.e., [[u/|3 . Since y, is given as

n
Yn = Z hitiy,—1
i=1

we can rewrite this equality as

Up—1
Unp—2

yn:[h1 hy - hn]
up
We want to find the v with the smallest 2-norm such that
y = Au.

where we assume that A has a full rank (i.e. h; # 0 for some i, 1 < i < n). Then, the solution
reduces to the familiar form:
0= A'(AA)y.

By noting that AA’ = >"" | h?, we can obtain 4, as follows;

. h;y .

Uj = =—, for j=0,1,--- ,n—1

Y

ii) a) Let’s introduce e as an error such that y, =7 —e. It can also be written as § — y,, = e. Then
now the quantity we would like to minimize can be written as

r(@ = yn)* Hug+ o+
where r is a positive weighting parameter. The problem becomes to solve the following minimization
problem :
n
i = arg minZu? + re? = argmin(||ul? + 7|le||3),

from which we see that r is a weight that characterizes the tradeoff between the size of the final
error, § — yn, and energy of the input signal, u.

In order to reduce the problem into the familiar form, i.e, ||y — Ax||, let’s augment /re at the
bottom of u so that a new augmented vector, @ is

U

|2

)
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This choice of @ follows from the observation that this is the @ that would have ||@]|3 = |3 + re?,
the quantity we aim to minimize .

Now we can write y as follows
u
e

Now, 4 can be obtained using the augmented A, A, as

A =Au+e=y, +e.

\Qz

v=[a: 3]

!/

5N

o= MAX) g = | 4

1
[AA’ + } 7.

S

By noting that
R |
AA + = = E hi + =
+ r= it r’
we can obtain #; as follows

uj = hi 1
S hi+ g

ii) b) When r = 0, it can be interpreted that the error can be anything, but we would like to
minimize the input energy. Thus we expect that the solution will have all the u;’s to be zero. In
fact, the expression obtained in ii) a) will be zero as r — 0. On the other hand, the other situation
is an interesting case. We put a weight of oo to the final state error, then the expression from ii)
a) gives the same expression as in i) as r — oco.

for j=0,--- ,n—1.

Exercise 3.3 This problem is similar to Example 3.4, except now we require that p(7") = 0. We
can derive, from x(t) = p(t), that p(t) = x(t) * tu(t fo (t — 7)x(7)dT where * denotes convolution
and u(t) is the unit step, defined as 1 When t > O and 0 When t < 0. (One way to derive this
is to take x(t) = p(t) to the Laplace domain, taking into account initial conditions, to find the
transfer function H (s ) ( )/ X (s), hence the impulse response h(t ) such that p(t) = x(t) x h(t)).
Simﬂarly, p(t) = :c( fo 7)dr. So, y = p fo (r)dr and 0 = p(T) =
x(t fo T)dr. You can check that < g(¢ ) >= fo dT is an inner product on
the space of contlnuous functions on [0, 77, denoted by C’ [0, 77, Wthh we are searching for z(t). So,
we have that y = p(T) =< (T —t),z(t) > and 0 = p(T) =< 1,z(t) >. In matrix form,

[g]:[<5£z§2> =< [T—t 1],2(t) >

where < .,. > denotes the Grammian, as defined in chapter 2. Now, in chapter 3, it was shown
that the minimum length solution to y =< A,z =, is # = A < A, A ="' 4. So, for our problem,

G=[T—t 1]<[T—t 1],[T—¢ 1}>—1[g]

Where, using the definition of the Grammian, we have that:

[Tt 1], [Tt 1]~ <T—t,T—t> <T—t,1>}

<1,T—-t> <1L1>



Now, we can use the definition for inner product to find the individual entries, < T — ¢,T — t >=
fo T—t)2dt=T3/3, <T —t,1>= fo t)dt = T?/2, and < 1,1 >= T. Plugging these in, one

can simplify the expression for & and obtain x(t) = %y[% — & for t € [0,T].

Alternatively, we have that x(t) = p ) Integratmg both sides and taking into account that
p(0) = 0 and p(0) = 0, we have p(t fo fo T)dr dt1 = fo (t1) dt1 Now, we use the integration

by parts formula, f(f u dv = uvlf) — fo v du, w1th U = fo 7)dr, and dv = dtl, hence du =
df(t1) == t1 dt; and v = t1 Plugging in and simphfylng we get that p(t T)dr dt; =
0
fo T)dT. Thus Yy = fo (r)dr =< T —t,z(t) > . In addltlon, we have that
fo T)dr =<1 3:( ) > . That is, we seek to find the minimum length x(¢) such that
y = <T—tx(t)>
0 = <1lz(t) >.

Recall that the minimum length solution #(#) must be a linear combination of 7' — ¢ and 1, i.e.,
z(t) = a1 (T — t) + a2. So,

Yy = <T—t,a1(T—t)+a2> = alfo —tht—l-CLng )dt = a1%3+a2%2
2
0 = <l,a (T —t)+ az > = fO ay (T —t) + ag)dt = al% + asT.

This is a system of two equations and two unknowns, which we can rewrite in matrix form:

3 2
¥y _ % % ai
0 T; T az |’

So,

Exercise 4.1 Note that for any v € C™, (show this!)

[vlloe < [[oll2 < Vm[|v]|oo- (1)

Therefore, for A € C™*" with z € C"

| Azll2 < v/im]| Azlloo — for = # 0, IE5le < ymlgZie
But, from equation (1), we also know that ”x‘l‘oo > ”leQ. Thus,
Azx|o ml|| Az ml||Azx
||33|!2 [Eq[P 7]

Equation (2) must hold for all z # 0, therefore



A
a0 2 = [[All2 < vim Ao

To prove the lower bound ﬁHAHOO < ||A||2, reconsider equation (1):

[Azllo _ [[Az]l2

el = Nl

Vil Azlle _ vl Az]:

el = 2l

[Az]loo < [[Az]l2 — for z # 0, <[l Allz =

< VnllA]2.
3)

But, from equation (1) for x € C" Vi 1o,

lzlle = flelleo
A A
1]l oo |2
Az oo

for all z # 0 including x that makes maximum, so,

[E3IBS

Az||so
max, 2o I = [Allee < vl Al2,

or equivalently,

1
— || Allse < ||A4]|2-
Tl < 141

Exercise 4.5 Any m X n matrix A, it can be expressed as

_ X0 /
A_U<0 0>v,

where U and V' are unitary matrices. The “Moore-Penrose inverse”, or pseudo-inverse of A,
denoted by AT, is then defined as the n x m matrix

—1
A*:V(EO 8>U’.

a) Now we have to show that AT A and AA™ are symmetric, and that AATA = A and ATAAT =
A™. Suppose that ¥ is a diagonal invertible matrix with the dimension of r x r. Using the given
definitions as well as the fact that for a unitary matrix U, U'U = UU’ = I, we have

0 1 0
+ / /
AAT = U<0 0>VV< 0 0>U

Y 0 > 1o ,
= oo o)i(% o)

_ Iixr O /
_ U<0 0>U,



which is symmetric. Similarly,

AtA = V(

which is again symmetric.
The facts derived above can be used to show the other two.

0 O

_ Iy O / %0 /
- U(O O)UU(OO>V

_ gl 0\
- (5 0)v

= A

AATA = (AAT)A= U< Irsr 0 > U'A

Also,

0O O
(T O (SR 0N
_ v( : 0>vv< : 0>U

B 20,y
- v(o O>U

= AT,

ATAAT = (ATA)AT = V( Lrxr 0 )V’A+

b) We have to show that when A has full column rank then AT = (A’A)~1A’, and that when A
has full row rank then At = A’(AA’)~!. If A has full column rank, then we know that m > n,

rank(A) = n, and
— ETLX” !
A=U < 0 ) V.

Also, as shown in chapter 2, when A has full column rank, (A’A)~! exists. Hence

(AA)TA = <V(E’ 0)U’U(§)V’>_1V(Z’ 0)U’

= (v¥'EV) V(Y 0)U
= VES)TVV(E 0)U
= VEE) (Y 0)U

= V(zt o)

= A"



Similarly, if A has full row rank, then n > m, rank(A4) = m, and
A=U(Smxm 0)V".

It can be proved that when A has full row rank, (A’A)~! exists. Hence,

Al(AANT = V< % >U’ <U( 0 )V’V( % >U’)_1

c¢) Show that, of all x that minimize ||y — Az||2, the one with the smallest length ||x||2 is given by
2 = ATy. If A has full row rank, we have shown in chapter 3 that the solution with the smallest
length is given by

&= A(AA) 1y,

and from part (b), A'(AA")~! = A*. Therefore
&= ATy.

Similary, it can be shown that the pseudo inverse is the solution for the case when a matrix A
has a full column rank (compare the results in chapter 2 with the expression you found in part (b)
for AT when A has full column rank).

Now, let’s consider the case when a matrix A is rank deficient, i.e., rank(A) = r < min(m,n)
where A € C™*" and is thus neither full row or column rank. Suppose we have a singular value
decomposition of A as

A=UxV,

where U and V are unitary matrices. Then the norm we are minimizing is

[Az —y|| = |[USV'z — y|| = [UEV'z - U'y)|| = |2 - U'y],

where z = V'x, since || - || is unaltered by the orthogonal transformation, U. Thus, x minimizes
||Az — y|| if and only if z minimizes ||Xz — ¢||, where ¢ = U’y. Since the rank of A is r, the matrix X
has the nonzero singular values o1, 09, - - - , 0, in its diagonal entries. Then we can rewrite || Xz —c||?
as follows:

T n
|22 — ¢||? = Z(aizi — )+ Z 2.

i=1 i=r+1
It is clear that the minimum of the norm can be achived when z; = % fori = 1,2,--- ,r and
the rest of the z;’s can be chosen arbitrarily. Thus, there are infinitely many solutions Z and the



solution with the minimum norm can be achieved when z; =0 fori =r+1,r+2,--- ,n. Thus, we
can write this Z as

zZ = Elc,

uboo
== (%0

and 3, is a square matrix with nonzero singular values in its diagonal in decreasing order. This
value of z also yields the value of x of minimal 2 norm since V' is a unitary matrix.
Thus the solution to this problem is

where

i=Vz=VSe=VUy=Aty.

It can be easily shown that this choice of AT satisfies all the conditions, or definitions, of pseudo
inverse in a).

Exercise 4.6. a) Suppose A € C)" has full column rank. Then QR factorization for A can be
easily constructed from SVD:
_ Y /
A=U ( 0 > Vv

where Y, is a n x n diagonal matrix with singular values on the diagonal. Let Q = U and R = X,,V’
and we get the QR factorization. Since @ is an orthogonal matrix, we can represent any Y € C}'

as
_ Y1
v=o(y;)
Next
B 2 _ i) R 2 _ Y1 —RX \ 2
w-axiz=le( 3 )-e( 5 )=o) E
Denote

[ Yi—RX
p=("")

and note that multiplication by an orthogonal matrix does not change Frobenius norm of the
matrix:

IQDIf% = tr(D'Q'QD) = tr(D'D) = || D|f3

Since Frobenius norm squared is equal to sum of squares of all elements, square of the Frobenius
norm of a block matrix is equal to sum of the squares of Frobenius norms of the blocks:

||<Y1—RX

) I = 1~ RXI +

Since Y5 block can not be affected by choice of X matrix, the problem reduces to minimization of
|Y1 — RX||%. Recalling that R is invertible (because A has full column rank) the solution is

X =R v,



b) Evaluate the expression with the pseudoinverse using the representations of A and Y from part

a):

(A’A)_lA’Y:OR’ o}Q’Q[];D_I[R' o}Q’Q[Q]ZR—I(R/)—l[RI o][g}:}z—lm

From 4.5 b) we know that if a matrix has a full column rank, A* = (4’A)~" 4, therefore both
expressions give the same solutions.

0
Y A
- axip+iz-sxE=1( )~ (5 )Xl

B also has full column rank, therefore we can apply results

from parts a) and b) to conclude that

((B)(3) (2) ()= wavmn @y ms

Since A has full column rank, < A
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