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HOMEWORK 1 SOLUTIONS

Exercise 1.1 a) Given square matrices A; and Ay, we know that A is square as well:
(A A
(0 )
(1 0 Ay A
SN0 Ay )\ 0 T

det< é 24 > — det(I)det(Ayg) = det(Ay),

Note that

which can be verified by recursively computing the principal minors. Also, by the elementary
operations of rows, we have

(A A\ A 0
det-( 0 I >—det< 0 I)—det(Al).

Finally note that when A and B are square, we have that det(AB) = det(A)det(B). Thus we have
det(A) = det(Ay)det(As).
b) Assume A7' and A; ' exist. Then
= (9 e (ma)-(o 1)
which yields four matrix equations:
1. ABy + AyBs = I,
2. A1By + A2By =0,
3. A4Bs =0,
4. AyBy = 1.

From Eqn (4), By = Ay, with which Eqn (2) yields By = —A; A4, Also, from Eqn (3)
Bs = 0, with which from Eqn (1) By = Al_l. Therefore,

L ATt AT A ALY
A = —1 .
0 A



Exercise 1.2 a)

0 I A1 AQ . Ad A4
I 0 A3 A4 - Al A2

(B B
b= <Bs B4>

b) Let us find

such that

BA = ( %1 ,44—1:11,21411/12 >
The above equation implies four equations for submatrices
1. B1A1 + By Az = Aj,
2. B1Ay + B Ay = Ay,
3. B3A; + B4A3 =0,
4. B3Ag + ByjAy = Ay — A3AT Ay

First two equations yield By = I and By = 0. Express Bs from the third equation as Bs =
—B4A3Af1 and plug it into the fourth. After gathering the terms we get By (A4 — AgAIlAQ) =
Ay — A3A1_1A2, which turns into identity if we set B4 = I. Therefore

I 0
b= (-AsAII I)

c¢) Using linear operations on rows we see that det (B) = 1. Then, det(A) = det(B)det(A) =
det (BA) = det (Ay) det (Ay — A3A7 " As). Note that (As — A3A;7 ' As) does not have to be invert-
ible for the proof.

Exercise 1.3 We have to prove that det(I — AB) = det(I — BA).
Proof: Since I and I — BA are square,

1 0
det(I — BA) = det(B I—BA)

“((5 D7)
(g )t )

det< é *IA > = det(I)det(I) = 1.

yet, from Exercise 1.1, we have

Thus,

I A
det(I—BA):det(B 7 )
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Now,

I A I-AB 0
det(B I>—det< B I>—det(I—AB).

Therefore
det(I — BA) = det(I — AB).

Note that (I — BA) is a ¢ x ¢ matrix while (I — AB) is a p X p matrix. Thus, when one wants to
compute the determinant of (I — AB) or (I — BA), s/he can compare p and ¢ to pick the product
(AB or BA) with the smaller size.

b) We have to show that (I — AB)™'A = A(I — BA)™L.
Proof: Assume that (I — BA)~! and (I — AB)~! exist. Then,

A = A.-I=A(I—-BA)(I-BA™*
= (A—ABA)(I-BA)™!
= (I-AB)A(I - BA)™!
—~ (I —-AB)'A = Al -BA™.

This completes the proof.

Exercise 1.6 a) The safest way to find the (element-wise) derivative is by its definition in terms
of limits, i.e.

d . At + At)B(t + At) — A(t)B(t)

dt At—0 At

We substitute first order Taylor series expansions

At + At) = A(t) + AtiA(t) + o(At)

dt
B(t+ At) = B(t) + At%B(t) +o(A)
to obtain
d A ! A A d A AtA d A
%( (t)B(t)) = AL [ (t)B(t) + t$ (t)B(t) + At (t)ﬁB(t) + h.o.t. — (t)B(t)} .

Here “h.o.t.” stands for the terms

h.o.t. = [A(t) - Atth(t)} o(At) + o(At) [B(t) + Atth(t)} + o(At?),

a matriz quantity, where lima; 0 h.o.t./At = 0 (verify). Reducing the expression and taking the
limit, we obtain

d d d
ZIAMB(0)] = ZAMNB(t) + A(t) 2 B(?).

b) For this part we write the identity A~!(¢)A(t) = I. Taking the derivative on both sides, we have

4
dt

(A7 (DA®] = S AT DAW) + A0 £ AM) =0



Rearranging and multiplying on the right by A~1(¢), we obtain

D a1y = a1

7 A(t)A™L(t).

dt

Exercise 1.8 Let X = {g(z) = ap + a12 + asx® + - -- + ayz™ | a; € C}.
a) We have to show that the set B = {1,z,--- ,2™} is a basis for X.
Proof :

1. First, let’s show that elements in B are linearly independent. It is clear that each element in
B can not be written as a linear combination of each other. More formally,

c1(1)+c1(:1;)+---+cM(:1:M) =0+ Vig =0.

Thus, elements of B are linearly independent.

2. Then, let’s show that elements in B span the space X. Every polynomial of order less than
or equal to M looks like
M
p(z) = Z oz’
i=0

for some set of a;’s.
Therefore, {1,z1,---,2M} span X.

b)T:X — X and T(g(z)) = Lg(x).

= dx

1. Show that T is linear.
Proof:

T(ag)(2) + bga() = - (agy (x) + bga(a))

— ai + bi
= aT'(g1) + bT'(g2).

Thus, T is linear.

2. g(x) = ap + a1 + avx? + - + apyz™, so

T(g(x)) = o1 + 2apz + - - - + Mayz™ L.

Thus it can be written as follows:

01 00 0 (674} a1
00 20 0 o1 209
00 0 3 0 o9 3as

: 0 o |~ :
0 00O M : Moy
0 00O 0 oM 0



The big matrix, M, is a matrix representation of T" with respect to basis B. The column
vector in the left is a representation of g(z) with respect to B. The column vector in the
right is T'(g) with respect to basis B.

. Since the matrix M is upper triangular with zeros along diagonal (in fact M is Hessenberg),
the eigenvalues are all 0;
A=0Vi=1,--- M+1.

. One eigenvector of M for A\; = 0 must satisfy MV; = A V43 =0
1
0
Vi =
0
is one eigenvector. Since )\; ’s are not distinct, the eigenvectors are not necessarily inde-

pendent. Thus in order to computer the M others, ones uses the generalized eigenvector
formula.
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