6.231 DYNAMIC PROGRAMMING
LECTURE 6
LECTURE OUTLINE

e Review of Q-factors and Bellman equations for
Q-factors

e VI and PI for Q-factors

e ()-learning - Combination of VI and sampling
e (Q-learning and cost function approximation
e Adaptive dynamic programming

e Approximation in policy space

e Additional topics

REVIEW

DISCOUNTED MDP

e System: Controlled Markov chain with states
i =1,...,n and finite set of controls u € U (7)

e Transition probabilities: p;;(u)

piiu)

Piill) ‘0.0’ pjjlu

pji(u)

e Cost of a policy m = {uo, p1,...} starting at
state ¢:

JW(Z') = lim FE {Z@kg(ik:,#k(ik),ik—kl) | 1= io}

N — o0
k=0

with « € [0, 1)
e Shorthand notation for DP mappings

BELLMAN EQUATIONS FOR Q-FACTORS

e The optimal ()-factors are defined by

Q*(4,u) = sz‘j(u) (9(i,u,) +aJ*(j)), ¥ (i,u)

e Since J* = T'J*, we have J*(i) = min,cy(;) Q* (4, u)
so the optimal ()-factors solve the equation

u' €U (j)

Q (i) = Y- pisa) (sl) +a_min Qi))
j=1
e LEquivalently Q* = F'Q*, where

(FQ)(iu) =S pis(u) (g<z',u,j>+a i @(j,u'>)

u' €U (j)

e Thisis Bellman’s Eq. for a system whose states
are the pairs (i, u)

e Similar mapping F}, and Bellman equation for
a policy p: Q. = F.Qy

4

BELLMAN EQ FOR @Q-FACTORS OF A POLICY

State-Control Pairs: Fixed Policy p

States

e (-factors of a policy u: For all (4, u)

Equivalently Qu = F,,(Q),,, where
(FLQ)(i,u) me g(i,u, §) + aQ (4, u()))

e This is a hnear equation. It can be used for
policy evaluation.

e Generally VI and PI can be carried out in terms
of Q-factors.

e When done exactly they produce results that

are mathematically equivalent to cost-based VI
and PIL.

5

WHAT IS GOOD AND BAD ABOUT Q-FACTORS

e All the exact theory and algorithms for costs
applies to Q-factors

— Bellman’s equations, contractions, optimal-
ity conditions, convergence of VI and PI

e All the approximate theory and algorithms for
costs applies to Q-factors

— Projected equations, sampling and exploration
issues, oscillations, aggregation

e A MODEL-FREE (on-line) controller imple-
mentation

— Once we calculate Q*(i,u) for all (¢, u),

p*(i) = arg min Q*(¢,u), Vi
ueU (3)

— Similarly, once we calculate a parametric ap-
proximation Q(z,u;r) for all (i, u),

ii(i) = arg min Q(i,u;7), Ve
uel (7)

e¢ The main bad thing: Greater dimension and
more storage! (It can be used for large-scale prob-

lems only through aggregation, or other approxi-
mation.) .

Q-LEARNING

Q-LEARNING

e In addition to the approximate PI methods
adapted for Q-factors, there is an important addi-
tional algorithm:

— Q-learning, a sampled form of VI (a stochas-
tic iterative algorithm).
e ()-learning algorithm (in its classical form):

— Sampling: Select sequence of pairs (ix, ug)
luse any probabilistic mechanism for this,
but all (i,u) are chosen infinitely often].

— Iteration: For each k, select 5. according to
Pirj(uk). Update just Q (i, ux):

Qr+1(ik,ur) = (1 —) Qr ik, ur)

+ vk | 9(ik, vk, jk) + @ min Qr(Jk, u’)
u €U (jr)

Leave unchanged all other Q-factors.

— Stepsize conditions: v; | 0

e We move Q(7,u) in the direction of a sample of

(FQ)(i,u) = pij(u) (g(i, u,j) +a min Q u'))

j=1 ;

NOTES AND QUESTIONS ABOUT Q-LEARNING

Qr+1(ik,ur) = (1 —) Qk (K, ug)

+ Y& | 90k, uk, Jk) + @ min Qr(jr,u’)
u €U (jk)

e Model free implementation. We just need a
simulator that given (i,u) produces next state j
and cost g(i,u, j)

e Operates on only one state-control pair at a
time. Convenient for simulation, no restrictions on
sampling method. (Connection with asynchronous
algorithms.)

e Aims to find the (exactly) optimal Q-factors.
e Why does it converge to (Q*7

e Why can’t I use a similar algorithm for optimal
costs (a sampled version of VI)?

e Important mathematical (fine) point: In the Q-
tactor version of Bellman’s equation the order of
expectation and minimization is reversed relative
to the cost version of Bellman’s equation:

J*(i) = min > pi;(u)(g(i,u, j) + at*(j))

Ul
ueU (3) P 9

CONVERGENCE ASPECTS OF Q-LEARNING

e ()-learning can be shown to converge to true/exact
Q-factors (under mild assumptions).

e The proof is sophisticated, based on theories of
stochastic approximation and asynchronous algo-
rithms.

e Uses the fact that the Q-learning map F':

(FQ)(i,u) = B;{g(i, u,7) + amin Q(j,u) }
1S a sup-norm contraction.

e Generic stochastic approximation algorithm:

— Consider generic fixed point problem involv-
ing an expectation:

T = Ew{f(a:,w)}

— Assume FEy{f(z,w)} is a contraction with
respect to some norm, so the iteration

Trt1 = Ew{f(zr, w)}

converges to the unique fixed point

— Approximate F,, { f(x, w)} by sampling

STOCH. APPROX. CONVERGENCE IDEAS

e Generate a sequence of samples {wi, w2, ...},
and approximate the convergent fixed point iter-

ation xx41 = Ew{f(zk, w)}

e At each iteration k use the approximation

k
Tht1 = % Z far, we) = Ew{f(zr,w)}
t=1

e A major flaw: it requires, for each k, the compu-
tation of f(xx,w;) for all values wy, t =1,... k.

e 'This motivates the more convenient iteration

k
1
xk+1:E;f(xt7wt)7]{:1,2,...,

that is similar, but requires much less computa-
tion; it needs only one value of f per sample wy.

e By denoting v = 1/k, it can also be written as

Try1 = (I — v)ze + e f(ap, wr), k=1,2,...

e Compare with ()-learning, where the fixed point
problem is () = F'()

(FQ)(i,u) = Ej{g(i,u, j) + amin Qj, u') }

Q- LEARNING COMBINED WITH OPTIMISTIC PI

e Each Q-learning iteration requires minimization
over all controls u’ € U(ji):

Qr+1(ik,ur) = (1 — 7)) Qr (Tk, uk)

+ Ve | 90k, uk, Jr) + & min Qr(jr, w')
uw €U (jk)
e To reduce this overhead we may consider re-
placing the minimization by a simpler operation
using just the “current policy” px

e This suggests an asynchronous sampled version
of the optimistic PI algorithm which policy eval-
uates by

Qk—l—l — F/Zik Qk?
and policy improves by p**1(i) € arg miny, ey (i) Qu+1 (3, u)

e This turns out not to work (counterexamples
by Williams and Baird, which date to 1993), but
a simple modification of the algorithm is valid

e See a series of papers starting with

D. Bertsekas and H. Yu, “Q-Learning and En-
hanced Policy Iteration in Discounted Dynamic
Programming,” Math. of OR, Vol. 37, 2012, pp.
66-94 "

Q-FACTOR APPROXIMATIONS

e We introduce basis function approximation:

~

Q(i,u;r) = (i, u)'r

e We can use approximate policy iteration and
LSTD/LSPE for policy evaluation

e Optimistic policy iteration methods are fre-
quently used on a heuristic basis

e An extreme example: Generate trajectory {(ix, ug) |
k=0,1,...} as follows.

e At iteration k, given 1y and state/control (ig, ug):

(1) Simulate next transition (ig,ix41) using the
transition probabilities p;, ; (ug).

(2) Generate control ugy1 from

~

Upt1 = arg min = Q(ik41,u, k)
UEU(Zk+1)

(3) Update the parameter vector via

rr+1 = rx — (LSPE or TD-like correction)

e Complex behavior, unclear validity (oscilla-
tions, etc). There is solid basis for an important
special case: optimal stopping (see text)

13

BELLMAN EQUATION ERROR APPROACH

e Another model-free approach for approximate
evaluation of policy u: Approximate @ (7, u) with
Qu(t,u;r,) = ¢(2,u)'r,, obtained from

ru € argmin || ®r — FM(CI)T)H?

where || - ||¢ is Euclidean norm, weighted with re-
spect to some distribution &.

e Implementation for deterministic problems:

(1) Generate a large set of sample pairs (i, ux),
and corresponding deterministic costs g (i, ux)
and transitions (jg, 1(jx)) (a simulator may
be used for this).

(2) Solve the linear least squares problem:

2

min 37 |0k, u)' — (a(ix, uk) + @ (ji. n(x)) 7

e For stochastic problems a similar (more com-
plex) least squares approach works. It is closely
related to LSTD (but less attractive; see the text).

e Because this approach is model-free, it is often
used as the basis for adaptive control of systems
with unknown dynamics.

14

ADAPTIVE CONTROL BASED ON ADP

15

LINEAR-QUADRATIC PROBLEM

o System: xp11 = Axrp+Bug, xp € R, up € k™
o Cost: Y~ (2} Qxy + uj Rug), @ >0, R>0

e Optimal policy is linear: u*(x) = Lx

e The Q-factor of each linear policy u is quadratic:

Qurw)=(a) K (L) ()

u

e We will consider A and B unknown

e We represent Q-factors using as basis func-
tions all the quadratic functions involving state
and control components

xiad, utud, xiud, Vi,7

These are the “rows” ¢(x,u)’ of

e The Q-factor (), of a linear policy p can be ex-
actly represented within the approximation sub-
space:

QM (xa u) — gb(xa U)’T,u

where 7, consists of the components of K, in (*)

16

PI FOR LINEAR-QUADRATIC PROBLEM

e Policy evaluation: r, is found by the Bellman
error approach

2

mrin Z ‘gb(azk, ug)'r — (x;anfk + ug Ruy, + ¢<$k+1a H(karl))/r)

where (xg,ug, Tr+1) are many samples generated
by the system or a simulator of the system.

e Policy improvement:

fi(z) € argmin (¢(x, u)'ry)

u

e Knowledge of A and B is not required

e If the policy evaluation is done exactly, this
becomes exact PI, and convergence to an optimal
policy can be shown

e The basic idea of this example has been gener-
alized and forms the starting point of the field of
adaptive dynamic programming

e This field deals with adaptive control of continuous-
space, (possibly nonlinear) dynamic systems, in
both discrete and continuous time

17

APPROXIMATION IN POLICY SPACE

18

APPROXIMATION IN POLICY SPACE

e We parametrize policies by a vector r = (r1,...,7s)

(an approximation architecture for policies).

e Each policy a(r) = {a(i;r) | i = 1,...,n}
defines a cost vector Jj(,) (a function of 7).

e We optimize some measure of J;(,) over r.

e For example, use a random search, gradient, or
other method to minimize over r

> &idam (i),
1=1

where &1, ..., &, are some state-dependent weights.

e An important special case: Introduce cost ap-
proximation architecture V' (i;r) that defines indi-
rectly the parametrization of the policies

mn

ali;r) = arg min > pij(u)(g(i,u, j)+aV (j;7)),
uel (1) .

e This introduces state features into approxima-

tion in policy space.

e A policy approximator is called an actor, while a
cost approximator is also called a critic. An actor
and a critic may coexist.

9

APPROXIMATION IN POLICY SPACE METHODS

e Random search methods are straightforward
and have scored some impressive successes with
challenging problems (e.g., tetris).

— At a given point/r they generate a random
collection of neighboring r. They search within
the neighborhood for better points.

— Many variations (the cross entropy method
is one).
— They are very broadly applicable (to discrete
and continuous search spaces).
— They are idiosynchratic.
e Gradient-type methods (known as policy gra-
dient methods) also have been used extensively.

— They move along the gradient with respect
to r of

> & (i)
1=1

— There are explicit gradient formulas which
can be approximated by simulation.

— Policy gradient methods generally suffer by
slow convergence, local minima, and exces-
sive simulation noise.

20

COMBINATION WITH APPROXIMATE PI

e Another possibility is to try to implement PI
within the class of parametrized policies.

e Given a policy/actor u(i;rg), we evaluate it
(perhaps approximately) with a critic that pro-
duces J,,, using some policy evaluation method.

e We then consider the policy improvement phase

~

ﬁ(l) € arg mgnzpij(u) (g(iauaj) T a'],u(j))v Vi

and do it approximately via parametric optimiza-
tion

mrin S: & S: Dij (ﬁ(i; 7“)) (9 (ia (e r), j) +Oéju (]))

where &; are some weights.

e This can be attempted by a gradient-type method
in the space of the parameter vector r.

e Schemes like this been extensively applied to
continuous-space deterministic problems.

e Many unresolved theoretical issues, particularly
for stochastic problems. ,,

FINAL WORDS

22

TOPICS THAT WE HAVE NOT COVERED

e Extensions to discounted semi-Markov, stochas-
tic shortest path problems, average cost problems,
sequential games ...

e Extensions to continuous-space problems
e Extensions to continuous-time problems

e Adaptive DP - Continuous-time deterministic
optimal control. Approximation of cost function
derivatives or cost function differences

e Random search methods for approximate policy
evaluation or approximation in policy space

e Basis function adaptation (automatic genera-
tion of basis functions, optimal selection of basis
functions within a parametric class)

e Simulation-based methods for general linear
problems, i.e., solution of linear equations, linear
least squares, etc - Monte-Carlo linear algebra

23

CONCLUDING REMARKS

e There is no clear winner among ADP methods

e There is interesting theory in all types of meth-
ods (which, however, does not provide ironclad
performance guarantees)

e There are major flaws in all methods:

— Oscillations and exploration issues in approx-
imate PI with projected equations

— Restrictions on the approximation architec-
ture in approximate PI with aggregation

— Flakiness of optimization in policy space ap-
proximation

e Yet these methods have impressive successes
to show with enormously complex problems, for
which there is often no alternative methodology

e There are also other competing ADP methods
(rollout is simple, often successful, and generally
reliable; approximate LP is worth considering)

e¢ Theoretical understanding is important and
nontrivial

e Practice is an art and a challenge to our cre-
ativity! y

THANK YOU

25

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

