
6.231 DYNAMIC PROGRAMMING

LECTURE 5

LECTURE OUTLINE

• Review of approximate PI based on projected
Bellman equations

• Issues of policy improvement

− Exploration enhancement in policy evalua­
tion

− Oscillations in approximate PI

• Aggregation – An alternative to the projected
equation/Galerkin approach

• Examples of aggregation

• Simulation-based aggregation

• Relation between aggregation and projected
equations

1

REVIEW

2

DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

• Transition probabilities: pij(u)

i j

pij(u)

pii(u) p j j(u)

pji(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

N

()

Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i = i0
N→∞

k=0

with α ∈ [0, 1)

• Shorthand notation for DP mappings

n

()

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n,
u∈U(i)

j=1

n

()(())

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n

j=1 3

i j

Controlled System Cost per Stage Vector
tion Matrix ()

i, u, r)

Steady­State Distribution
Cost ()

Approximate Policy

Evaluation

Policy Improvement

APPROXIMATE PI

Generate “Improved” Policy µ

Initial Policy

J̃µ(i, r)
Evaluate Approximate Cost

• Evaluation of typical policy µ: Linear cost func­
tion approximation

J̃µ(r) = Φr

where Φ is full rank n × s matrix with columns
the basis functions, and ith row denoted φ(i)′ .

• Policy “improvement” to generate µ:
n

()

µ(i) = arg min pij(u) g(i, u, j) + αφ(j)′ r
u∈U(i)

j=1

4

∑

Set

Slope

Simulation error

Simulation error

)

= 0 0

. Φ

Solution of

∗

EVALUATION BY PROJECTED EQUATIONS

• Approximate policy evaluation by solving

Φr = ΠTµ(Φr)

Π: weighted Euclidean projection; special nature

of the steady-state distribution weighting.

• Implementation by simulation (single long tra­
jectory using current policy - important to make
ΠTµ a contraction). LSTD, LSPE methods.

(λ)
• Multistep option: Solve Φr = ΠTµ (Φr) with

∞

(λ)
λℓT ℓ+1 Tµ = (1− λ) µ , 0 ≤ λ < 1

ℓ=0
(λ)

− As λ ↑ 1, ΠTµ becomes a contraction for
any projection norm (allows changes in Π)

− Bias-variance tradeoff

Subspace S = {Φr | r ∈ ℜs}

Jµ

Simulation error
ΠJµ

Bias

λ = 0

λ = 1

Solution of projected equation

Simulation error

Φr = ΠT (λ)(Φr)

5

∑

ISSUES OF POLICY IMPROVEMENT

6

EXPLORATION

• 1st major issue: exploration. To evaluate µ,
we need to generate cost samples using µ

• This biases the simulation by underrepresenting
states that are unlikely to occur under µ.

• As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate,
and seriously impact the “improved policy” µ.

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela­
tively small” (e.g., a deterministic system).

• To deal with this we must change the sampling

mechanism and modify the simulation formulas.

• Solve
Φr = ΠTµ(Φr)

where Π is projection with respect to an exploration-
enhanced norm [uses a weight distribution ζ =
(ζ1, . . . , ζn)].

• ζ is more “balanced” than ξ the steady-state
distribution of the Markov chain of µ.

• This also addresses any lack of ergodicity of µ.

7

EXPLORATION MECHANISMS

• One possibility: Use multiple short simulation
trajectories instead of single long trajectory start­
ing from a rich mixture of states. This is known
as geometric sampling, or free-form sampling.

− By properly choosing the starting states, we
enhance exploration

− The simulation formulas for LSTD(λ) and
LSPE(λ) have to be modified to yield the so­

(λ)
lution of Φr = ΠTµ (Φr) (see the DP text)

• Another possibility: Use a modified policy to
generate a single long trajectory. This is called an
off-policy approach.

− Modify the transition probabilities of µ to
enhance exploration

− Again the simulation formulas for LSTD(λ)
and LSPE(λ) have to be modified to yield

(λ)
the solution of Φr = ΠTµ (Φr) (use of im­
portance sampling; see the DP text)

• With larger values of λ > 0 the contraction

(λ)

property of ΠTµ is maintained.

(λ)
• LSTD may be used without ΠTµ being a con­
traction ... LSPE and TD require a contraction.

8

k

+1

+2

+2

� �

POLICY ITERATION ISSUES: OSCILLATIONS

• 2nd major issue: oscillation of policies

• Analysis using the greedy partition of the space
of weights r: Rµ is the set of parameter vectors r
for which µ is greedy with respect to J̃(·; r) = Φr

Rµ = r | Tµ(Φr) = T (Φr) ∀ µ

If we use r in Rµ the next “improved” policy is µ

r µ k

r µ k+1

r µ k+2

r µ k+3

R µ k

R µ k+1

R µ k+2

R µ k+3

• If policy evaluation is exact, there is a finite
number of possible vectors rµ, (one per µ)

• The algorithm ends up repeating some cycle of
policies µk, µk+1 , . . . , µk+m with

r k ∈ R k+1 , r ∈ R k+2 , . . . , r k+m ∈ Rk+1 kµ µ µ µ µ µ

• Many different cycles are possible
9

1

2

2

MORE ON OSCILLATIONS/CHATTERING

• In the case of optimistic policy iteration a dif­
ferent picture holds (policy evaluation does not
produce exactly rµ)

r µ 1

r µ 2

r µ 3

R µ 1

R µ 2

R µ 3

• Oscillations of weight vector r are less violent,
but the “limit” point is meaningless!

• Fundamentally, oscillations are due to the lack

of monotonicity of the projection operator, i.e.,

′ ′J ≤ J does not imply ΠJ ≤ ΠJ .

• If approximate PI uses an evaluation of the form

Φr = (WTµ)(Φr)

with W : monotone and WTµ: contraction, the
policies converge (to a possibly nonoptimal limit).

• These conditions hold when aggregation is used

10

AGGREGATION

11

PROBLEM APPROXIMATION - AGGREGATION

• Another major idea in ADP is to approximate
J∗ or Jµ with the cost-to-go functions of a simpler
problem.

• Aggregation is a systematic approach for prob­
lem approximation. Main elements:

− Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

− Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

−	 Solve (exactly or approximately) the “ag­
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

• If R̂(y) is the optimal cost of aggregate state y,
we use the approximation

J∗(j) ≈ φjy R̂(y), ∀ j
y

where φjy are the aggregation probabilities, en­
coding the “degree of membership of j in the ag­
gregate state y”

• This is a linear architecture: φjy are the features
of state j 12

∑

2 3 4 5 6 7 8 91 3 4 5 6 7 8 91 2 4 5 6 7 8 9

1 2 3 5 6 7 8 91 2 3 4 6 7 8 91 2 3 4 5 7 8 9

1 2 3 4 5 6 8 91 2 3 4 5 6 7 91 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

HARD AGGREGATION EXAMPLE

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs.: φjy = 1 if j belongs to
aggregate state y (piecewise constant approx).

1 2 3

4 5 6

7 8 9

x1 x2

x3 x4

Φ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• What should be the “aggregate” transition probs.
out of x?

• Select i ∈ x and use the transition probs. of i.
But which i should I use?

• The simplest possibility is to assume that all
states i in x are equally likely.

• A generalization is to randomize, i.e., use “dis­
aggregation probabilities” dxi: Roughly, the “de­
gree to which i is representative of x.”

13

according to with cost

S

, = 1

),),

System States Aggregate States

�

Original Aggregate States

�

|

Original System States

Probabilities

�

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

�

Aggregation

Disaggregation Probabilities

Matrix D

pij(u),
ji

x y

AGGREGATION/DISAGGREGATION PROBS

dxi φjy Q

Original
System States

Aggregate States

Disaggregation
Probabilities

Aggregation
Probabilities

Matrix D Matrix Φ

• Define the aggregate system transition proba­
bilities via two (somewhat arbitrary) choices.

• For each original system state j and aggregate
state y, the aggregation probability φjy

− Roughly, the “degree of membership of j in
the aggregate state y.”

− In hard aggregation, φjy = 1 if state j be­
longs to aggregate state/subset y.

• For each aggregate state x and original system
state i, the disaggregation probability dxi

− Roughly, the “degree to which i is represen­
tative of x.”

• Aggregation scheme is defined by the two ma­
trices D and Φ. The rows of D and Φ must be
probability distributions.

14

according to pij(u), with cost
, j = 1i

), x), y

according to with cost

S

, = 1

),),

System States Aggregate States

Original Aggregate States

|

Original System States

Probabilities

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

Aggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

AGGREGATE SYSTEM DESCRIPTION

dxi φjy Q

Original
System States

p̂xy(u) =
n �

i=1

dxi

n �

j=1

pij (u)φjy ,

Disaggregation
Probabilities

Aggregation
Probabilities

ĝ(x, u) =
n �

i=1

dxi

n �

j=1

pij (u)g(i, u, j)

, g(i, u, j)

• The transition probability from aggregate state
x to aggregate state y under control u

n n

ˆp̂xy(u) = dxi pij(u)φjy, or P (u) = DP (u)Φ
i=1 j=1

where the rows of D and Φ are the disaggregation
and aggregation probs.

• The expected transition cost is

n n

ĝ(x, u) = dxi pij(u)g(i, u, j), or ĝ = DP (u)g
i=1 j=1

15

∑ ∑

∑ ∑

according to pij(u), with cost

S

, j = 1i

), x), y

{

|

Original System States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

, g(i, u, j)
Matrix Matrix

{

|

Original System States Aggregate States

according to with cost

S

, = 1

),),

System States Aggregate States
Original Aggregate States

|

Original System States

Probabilities

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation ProbabilitiesAggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

� �

AGGREGATE BELLMAN’S EQUATION

dxi φjy Q

Original
System States

p̂xy(u) =
n �

i=1

dxi

n �

j=1

pij (u)φjy ,

Disaggregation
Probabilities

Aggregation
Probabilities

ĝ(x, u) =
n �

i=1

dxi

n �

j=1

pij (u)g(i, u, j)

, g(i, u, j)

• The optimal cost function of the aggregate prob­
lem, denoted R̂, is

R̂(x) = min ĝ(x, u) + α p̂xy(u)R̂(y) , ∀ x
u∈U

y

Bellman’s equation for the aggregate problem.

• The optimal cost function J∗ of the original
problem is approximated by J̃ given by

˜ ˆJ(j) = φjy R(y), ∀ j
y

16

according to with cost

S

, = 1

),),

System States Aggregate States

{

Original Aggregate States

{

|

Original System States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

Matrix Matrix

∑

∑

according to pij(u), with cost
, j = 1i

), x), y

, g(i, u, j)
Matrix Matrix

{

|

Original System States Aggregate States

2 3 4 5 6 7 8 91 3 4 5 6 7 8 91 2 4 5 6 7 8 9

1 2 3 5 6 7 8 91 2 3 4 6 7 8 91 2 3 4 5 7 8 9

1 2 3 4 5 6 8 91 2 3 4 5 6 7 91 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

EXAMPLE I: HARD AGGREGATION

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs.: φjy = 1 if j belongs to
aggregate state y.

1 2 3

4 5 6

7 8 9

x1 x2

x3 x4

Φ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• Disaggregation probs.: There are many possi­
bilities, e.g., all states i within aggregate state x
have equal prob. dxi.

• If optimal cost vector J∗ is piecewise constant
over the aggregate states/subsets, hard aggrega­
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

• A variant: Soft aggregation (provides “soft
boundaries” between aggregate states).

17

Special Aggregate States Features
)

Special States FeaturesSpecial States Aggregate States

Feature Extraction Mapping Vector
Feature Mapping Feature Vector

States Aggregate StatesFeatures

Feature
Extraction

EXAMPLE II: FEATURE-BASED AGGREGATION

• Important question: How do we group states
together?

• If we know good features, it makes sense to

group together states that have “similar features”

• A general approach for passing from a feature-
based state representation to a hard aggregation-
based architecture

• Essentially discretize the features and generate
a corresponding piecewise constant approximation
to the optimal cost function

• Aggregation-based architecture is more power­
ful (it is nonlinear in the features)

• ... but may require many more aggregate states
to reach the same level of performance as the cor­
responding linear feature-based architecture

18

j

x j1

j2

x

j3 1

2

y3

EXAMPLE III: REP. STATES/COARSE GRID

• Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state

x

j2

j3

j1

y1 y2

y3

Original State Space

Representative/Aggregate States

• Disaggregation probabilities are dxi = 1 if i is
equal to representative state x.

• Aggregation probabilities associate original sys­
tem states with convex combinations of represen­
tative states

j ∼ φjyy

y∈A

• Well-suited for Euclidean space discretization

• Extends nicely to continuous state space, in­
cluding belief space of POMDP

19

∑

y3

0 1 2 49

Small cost

Small costij

ij

Aggregate States/Subsets
0 1 2 49

φ

φ

EXAMPLE IV: REPRESENTATIVE FEATURES

• Here the aggregate states are nonempty subsets
of original system states. Common case: Each Sx

is a group of states with “similar features”

Original State Space

Aggregate States/Subsets

Sx1 Sx2

Sx3

j

j
i

pij

pij

φjx1

φjx2

φjx3

• Restrictions:

− The aggregate states/subsets are disjoint.

− The disaggregation probabilities satisfy dxi >

0 if and only if i ∈ x.

− The aggregation probabilities satisfy φjy = 1
for all j ∈ y.

• Hard aggregation is a special case: ∪xSx =
{1, . . . , n}

• Aggregation with representative states is a spe­
cial case: Sx consists of just one state

20

according to with cost

S

, = 1

),),

System States Aggregate States
Original Aggregate States

|

Original System States

Probabilities

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation ProbabilitiesAggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

APPROXIMATE PI BY AGGREGATION

dxi φjy Q

Original
System States

p̂xy(u) =
n �

i=1

dxi

n �

j=1

pij (u)φjy ,

Disaggregation
Probabilities

Aggregation
Probabilities

ĝ(x, u) =
n �

i=1

dxi

n �

j=1

pij (u)g(i, u, j)

, g(i, u, j)

• Consider approximate PI for the original prob­
lem, with policy evaluation done by aggregation.

• Evaluation of policy µ: J̃ = ΦR, where R =
DTµ(ΦR) (R is the vector of costs of aggregate
states for µ). Can be done by simulation.

• Looks like projected equation ΦR = ΠTµ(ΦR)
(but with ΦD in place of Π).

• Advantage: It has no problem with oscillations.

• Disadvantage: The rows of D and Φ must be
probability distributions.

21

according to pij(u), with cost
, j = 1i

), x), y

{

Original System States Aggregate States

{

|

Original System States Aggregate States

, g(i, u, j)
Matrix Matrix

ADDITIONAL ISSUES OF AGGREGATION

22

according to with cost

S

, = 1

),),

System States Aggregate States

�

Original Aggregate States

�

|

Original System States

Probabilities

�

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

�

Aggregation

Disaggregation Probabilities

Matrix D

pij(u),
ji

x y

ALTERNATIVE POLICY ITERATION

• The preceding PI method uses policies that as­
sign a control to each aggregate state.

• An alternative is to use PI for the combined
system, involving the Bellman equations:

n

R∗(x) = dxi J̃0(i), ∀ x,
i=1

n
()

J̃0(i) = min pij(u) g(i, u, j)+αJ̃1(j) , i = 1, . . . , n,
u∈U(i)

j=1

J̃1(j) = φjyR∗(y), j = 1, . . . , n.

y∈A

dxi φjy Q

Original
System States

Aggregate States

Disaggregation
Probabilities

Aggregation
Probabilities

Matrix D Matrix Φ

• Simulation-based PI and VI are still possible.

23

∑

∑

,

∑

according to pij(u), with cost

S

, j = 1i

), x), y

System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

Matrix D

RELATION OF AGGREGATION/PROJECTION

• Compare aggregation and projected equations

ΦR = ΦDT (ΦR), Φr = ΠT (Φr)

• If ΦD is a projection (with respect to some
weighted Euclidean norm), then the methodology
of projected equations applies to aggregation

• Hard aggregation case: ΦD can be verified to be
projection with respect to weights ξi proportional
to the disaggregation probabilities dxi

• Aggregation with representative features case:
ΦD can be verified to be a semi-norm projection
with respect to weights ξi proportional to dxi

• A (weighted) Euclidean semi-norm is defined by

L
()2nIJIξ = ξi J(i) , where ξ = (ξ1, . . . , ξn), i=1

with ξi≥ 0.

• If Φ′ΞΦ is invertible, the entire theory and
algorithms of projected equations generalizes to
semi-norm projected equations [including multi­
step methods such as LSTD/LSPE/TD(λ)].

• Reference: Yu and Bertsekas, “Weighted Bell­
man Equations and their Applications in Approxi­
mate Dynamic Programming,” MIT Report, 2012.

24

DISTRIBUTED AGGREGATION I

• We consider decomposition/distributed solu­
tion of large-scale discounted DP problems by hard
aggregation.

• Partition the original system states into subsets
S1, . . . , Sm.

• Distributed VI Scheme: Each subset Sℓ

− Maintains detailed/exact local costs

J(i) for every original system state i ∈ Sℓ

using aggregate costs of other subsets
L

− Maintains an aggregate cost R(ℓ) = i∈Sℓ
dℓiJ(i)

− Sends R(ℓ) to other aggregate states

• J(i) and R(ℓ) are updated by VI according to

Jk+1(i) = min Hℓ(i, u, Jk, Rk), ∀ i ∈ Sℓ
u∈U(i)

with Rk being the vector of R(ℓ) at time k, and

n

Hℓ(i, u, J, R) = pij(u)g(i, u, j) + α pij(u)J(j)

j=1 j∈Sℓ

25
+ α pij(u)R(ℓ ′)

j∈S
ℓ ′ , ℓ′=� ℓ

∑ ∑

∑

′ 6

DISTRIBUTED AGGREGATION II

• Can show that this iteration involves a sup-
norm contraction mapping of modulus α, so it
converges to the unique solution of the system of
equations in (J,R)

J(i) = min Hℓ(i, u, J,R), R(ℓ) = dℓiJ(i),
u∈U(i)

i∈Sℓ

∀ i ∈ Sℓ, ℓ = 1, . . . ,m.

• This follows from the fact that {dℓi | i =
1, . . . , n} is a probability distribution.

• View these equations as a set of Bellman equa­
tions for an “aggregate” DP problem. The differ­
ence is that the mapping H involves J(j) rather

()

than R x(j) for j ∈ Sℓ.

• In an asynchronous version of the method, the
aggregate costs R(ℓ) may be outdated to account
for communication “delays” between aggregate states.

• Convergence can be shown using the general

theory of asynchronous distributed computation,

briefly described in the 2nd lecture (see the text).

26

∑

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

