6.231 DYNAMIC PROGRAMMING
LECTURE 5
LECTURE OUTLINE

e Review of approximate PI based on projected
Bellman equations

e Issues of policy improvement

— Exploration enhancement in policy evalua-
tion
— Oscillations in approximate PI

e Aggregation — An alternative to the projected
equation/Galerkin approach

e Examples of aggregation
e Simulation-based aggregation

e Relation between aggregation and projected
equations



REVIEW



DISCOUNTED MDP

e System: Controlled Markov chain with states
i =1,...,n and finite set of controls u € U (7)

e Transition probabilities: p;;(u)

piiu)

Piill) ‘0.0’ pjjlu

pji(u)

e Cost of a policy m = {uo, p1,...} starting at
state ¢:

JW(Z') = lim FE {Z@kg(ik:,#k(ik),ik—kl) | 1= io}

N — o0
k=0

with « € [0, 1)
e Shorthand notation for DP mappings



APPROXIMATE PI

Initial Policy

l

Evaluate Approximate Cost

Y Ju(iyr)

|

«— Generate “Improved” Policy 1

Approximate Policy

Evaluation

Policy Improvement

e [Evaluation of typical policy p: Linear cost func-

tion approximation

where @ is full rank n X s matrix with columns
the basis functions, and ¢th row denoted ¢(z)’.

e Policy “improvement” to generate f:

(i) = arg min szg(u) (9(i,u,5) + ap(4)'r)



EVALUATION BY PROJECTED EQUATIONS

e Approximate policy evaluation by solving
¢r =117, (Pr)

II: weighted Euclidean projection; special nature
of the steady-state distribution weighting.

e Implementation by simulation (single long tra-

jectory using current policy - important to make
IIT}, a contraction). LSTD, LSPE methods.

e Multistep option: Solve ®r = HTISA)((I)T) with
TV =1 -N)) M, 0<a<
(=0
— As A 1 1, HT,S)‘) becomes a contraction for
any projection norm (allows changes in II)

— Bias-variance tradeoff

Solution of projected equation
Or = IITN) (Pr)

I1J, Simulation error

_—"__"';--r’ 5
A=1, "~ [.-—== Bias
T — ‘\Simulation error

Subspace S = {®r | r € Rs}




ISSUES OF POLICY IMPROVEMENT



EXPLORATION

e 1st major issue: exploration. To evaluate p,
we need to generate cost samples using

e This biases the simulation by underrepresenting
states that are unlikely to occur under pu.

e As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate,
and seriously impact the “improved policy” u.

e This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system).

e To deal with this we must change the sampling
mechanism and modify the simulation formulas.

e Solve B
¢r =117, (Pr)

where II is projection with respect to an exploration-
enhanced norm [uses a weight distribution ( =

(Cla e 7Cn)]

e ( is more “balanced” than & the steady-state
distribution of the Markov chain of pu.

e This also addresses any lack of ergodicity of L.
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EXPLORATION MECHANISMS

e One possibility: Use multiple short simulation
trajectories instead of single long trajectory start-
ing from a rich mixture of states. This is known
as geometric sampling, or free-form sampling.

— By properly choosing the starting states, we
enhance exploration

— The simulation formulas for LSTD(A) and
LSPE()) have to be modified to yield the so-

lution of ®r = ﬁT,Y‘)(CI)T) (see the DP text)

e Another possibility: Use a modified policy to
generate a single long trajectory. This is called an
off-policy approach.
— Modify the transition probabilities of u to
enhance exploration

— Again the simulation formulas for LSTD(\)
and LSPE()\) have to be modified to yield

the solution of ®r = ﬁT,Y‘)(CI)r) (use of im-
portance sampling; see the DP text)

e With larger values of A > 0 the contraction
property of IIT ,SA) is maintained.

e LSTD may be used without ﬁT,v([\) being a con-
traction ... LSPE and TD require a contraction.
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POLICY ITERATION ISSUES: OSCILLATIONS

e 2nd major issue: oscillation of policies

e Analysis using the greedy partition of the space
of weights r: Ry, is the set of parameter vectors r
for which u is greedy with respect to J(-;r) = ®r

Ry ={r|Tu(®r)=T(®r)} Vp

If we use r in R, the next “improved” policy is p

Ruk+1

e If policy evaluation is exact, there is a finite
number of possible vectors r,,, (one per p)

e The algorithm ends up repeating some cycle of
policies pk, pk+1, ... pktm with

S R'uk:+1, Tyuk+1 € Ruk:+2, oy Tyktm € Ruk

e Many different cycles are possible
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MORE ON OSCILLATIONS/CHATTERING

e In the case of optimistic policy iteration a dif-
ferent picture holds (policy evaluation does not
produce exactly r,,)

e Oscillations of weight vector r are less violent,
but the “limit” point is meaningless!

e Fundamentally, oscillations are due to the lack

of monotonicity of the projection operator, i.e.,
J < J’" does not imply I1J < I1J’.

e If approximate PI uses an evaluation of the form
¢r = (WT,)(Pr)

with W: monotone and WT),: contraction, the
policies converge (to a possibly nonoptimal limit).

e These conditions hold when aggregation is used
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AGGREGATION
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PROBLEM APPROXIMATION - AGGREGATION

e Another major idea in ADP is to approximate
J* or J, with the cost-to-go functions of a simpler
problem.

e Aggregation is a systematic approach for prob-
lem approximation. Main elements:

— Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

— Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

— Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

o If }A%(y) is the optimal cost of aggregate state v,
we use the approximation

TGy =)y diRy), ¥
Y

where ¢;, are the aggregation probabilities, en-
coding the “degree of membership of 7 in the ag-
gregate state y”

e This is alinear architecture: ¢;, are the features
of state 5 12



HARD AGGREGATION EXAMPLE

e Group the original system states into subsets,
and view each subset as an aggregate state

e Aggregation probs.: ¢j, = 1 if 7 belongs to
aggregate state y (piecewise constant approx).

1 0 0 0
R .2 .3 1 0 0 0
010 0
1 T2 1 0 0 0
o? o® o =10 0 0
010 0
o/ T3 o8 T4 9 O 0 1 O
00 1 0
00 0 1/

e What should be the “aggregate” transition probs.
out of 7

e Select 1 € x and use the transition probs. of 1.
But which ¢ should I use?

e The simplest possibility is to assume that all
states ¢ in x are equally likely.

e A generalization is to randomize, i.e., use “dis-
aggregation probabilities” dz;: Roughly, the “de-
gree to which ¢ is representative of x.”
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AGGREGATION/DISAGGREGATION PROBS

Original
System States

O 5

pij(u)

Disaggregation Aggregation
Probabilities Probabilities
. A \ 7
Matrix D Matrix ¢

e Define the aggregate system transition proba-
bilities via two (somewhat arbitrary) choices.

e For each original system state 5 and aggregate
state y, the aggregation probability ¢,

— Roughly, the “degree of membership of j in
the aggregate state y.”

— In hard aggregation, ¢;, = 1 if state j be-
longs to aggregate state/subset y.

e For each aggregate state = and original system
state 7, the disaggregation probability du;

— Roughly, the “degree to which ¢ is represen-
tative of x.”

e Aggregation scheme is defined by the two ma-
trices D and ®. The rows of D and ® must be
probability distributions.
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AGGREGATE SYSTEM DESCRIPTION

Original
System States

O, ~—(

Dij (U)a g(z’u’.])

Disaggregation Aggregation
Probabilities Probabilities

e The transition probability from aggregate state
x to aggregate state y under control u

Py (U Z Ao pr Wiy, or P(u) = DP(u)d

where the rows of D and ® are the disaggregation
and aggregation probs.

e The expected transition cost is

=Y dei ¥ pij(u)g(i,u,j), or§g=DP(u)g
i=1 j=1
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AGGREGATE BELLMAN’S EQUATION

Original

System States
O, > O,

Dij (U)7 g(,l’?uu?)

Disaggregation Aggregation
Probabilities Probabilities
i * * Pjy

e The optimal cost tunction of the aggregate prob-
lem, denoted R, is

A

R(x) = min |5z, w) + > pry()RE@)|,  Va

uelU

Bellman’s equation for the aggregate problem.

e The optimal cost function J* of the original
problem is approximated by J given by

J(G) =) bRy,  VJ
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EXAMPLE I: HARD AGGREGATION

e Group the original system states into subsets,
and view each subset as an aggregate state

e Aggregation probs.: ¢j, = 1 if 7 belongs to
aggregate state y.

1 00 0
1 9 3 1 00 0
¢ ° ° 01 0 0
71 T2 1 00 0
ok e of »=|1 0 0 0
| 01 0 0

.7 I3.8 564.9 O 0 1 O
00 1 0

00 0 1/

e Disaggregation probs.: There are many possi-
bilities, e.g., all states ¢ within aggregate state x
have equal prob. d.;.

e If optimal cost vector J* is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

e A variant: Soft aggregation (provides “soft
boundaries” between aggregate states).
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EXAMPLE II: FEATURE-BASED AGGREGATION

e Important question: How do we group states
together?

e If we know good features, it makes sense to
group together states that have “similar features”

@ Extraction T
P ° ° ™
[ ] [ ] [

States Features Aggregate States

e A general approach for passing from a feature-
based state representation to a hard aggregation-
based architecture

e Essentially discretize the features and generate
a corresponding piecewise constant approximation
to the optimal cost function

e Aggregation-based architecture is more power-
ful (it is nonlinear in the features)

e ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture
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EXAMPLE III: REP. STATES/COARSE GRID

e (Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state

Original State Space
/

Y

° Y
L@ S
—
J3 \

Representative/Aggregate States

e Disaggregation probabilities are dy; = 1 if ¢ is
equal to representative state x.

e Aggregation probabilities associate original sys-
tem states with convex combinations of represen-

tative states
g~ Z DjyYy
yeA

e Well-suited for Euclidean space discretization

e Extends nicely to continuous state space, in-
cluding belief space of POMDP
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EXAMPLE IV: REPRESENTATIVE FEATURES

e Here the aggregate states are nonempty subsets
of original system states. Common case: Each S,
is a group of states with “similar features”

Original State Space
|

I
le ¢]x1 . ng2

J
¢j332
Dij Sas

- Gl
1 .
Q.. ¢

|

Aggregate States/Subsets

e Restrictions:
— The aggregate states/subsets are disjoint.

— The disaggregation probabilities satisfy d,; >
0 if and only if ¢ € .

— The aggregation probabilities satisty ¢, =1
for all 7 € y.

e Hard aggregation is a special case: UgzSy =
{1,...,n}

e Aggregation with representative states is a spe-
cial case: S, consists of just one state
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APPROXIMATE PI BY AGGREGATION

Original
System States

O, - O,

Dij (U)a g(i)u’j)

Disaggregation Aggregation
Probabilities Probabilities
dri * * ¢j ]

e (Consider approximate PI for the original prob-
lem, with policy evaluation done by aggregation.

e LEvaluation of policy u: J = ®R, where R =
DT, (®PR) (R is the vector of costs of aggregate
states for p). Can be done by simulation.

e Looks like projected equation PR = IIT,,(PR)
(but with @D in place of II).

e Advantage: It has no problem with oscillations.

e Disadvantage: The rows of D and & must be
probability distributions.
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ADDITIONAL ISSUES OF AGGREGATION
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ALTERNATIVE POLICY ITERATION

e The preceding PI method uses policies that as-
sign a control to each aggregate state.

e An alternative is to use PI for the combined
system, involving the Bellman equations:

R*(z) =) daido(i), Vu,
1=1

n
Jo(i) = min > pij(u)(g(i, u, j)+adi(f)), i =1,
ueU (3)
=1
Jl(]): E ¢JyR*(y)7 ]:17 y T
yeA
Original
O System States
@- " ©
< pij(u) N
Disaggregation Aggregation
Probabilities Probabilities
daci * (bjy
Matrix D Matrix ®

e Simulation-based PI and VI are still possible.
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RELATION OF AGGREGATION/PROJECTION

e Compare aggregation and projected equations

®R = ®DT(®R),  &r = [IT(®r)

e If ®D is a projection (with respect to some
weighted FEuclidean norm), then the methodology
of projected equations applies to aggregation

e Hard aggregation case: ®D can be verified to be
projection with respect to weights &; proportional
to the disaggregation probabilities d;

e Aggregation with representative features case:
® D can be verified to be a semi-norm projection
with respect to weights &; proportional to d;

e A (weighted) Euclidean semi-norm is defined by

|7l = /S0y &(J (@), where € = (€1, . &),
with &> 0.

o If &’=® is invertible, the entire theory and
algorithms of projected equations generalizes to
semi-norm projected equations [including multi-

step methods such as LSTD/LSPE/TD(M)].

e Reference: Yu and Bertsekas, “Weighted Bell-
man Equations and their Applications in Approxi-
mate Dynamic Programming,” MIT Report, 2012.
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DISTRIBUTED AGGREGATION I

e We consider decomposition/distributed solu-
tion of large-scale discounted DP problems by hard
aggregation.

e Partition the original system states into subsets

S1,...,5m.
e Distributed VI Scheme: Each subset Sy

— Maintains detailed /exact local costs
J(i) for every original system state ¢ € Sy

using aggregate costs of other subsets

— Maintains an aggregate cost R(£) = ) _;cg, deiJ (1)

— Sends R({) to other aggregate states
e J(7) and R(¢) are updated by VI according to

Jk_|_1(i) = m(}r(l) Hg(i,u, Jk,Rk), Vie s
ucy (1

with Ry being the vector of R(¢) at time k, and

n

Hg(’l:,’UJ, J, R) — Zpij(u>g(i7u7j) + o Z pz](u)'](J)

j=1 JESY

s T Z pij (W) R(E)

JGSel 9 2’755



DISTRIBUTED AGGREGATION II

e (Can show that this iteration involves a sup-
norm contraction mapping of modulus «, so it
converges to the unique solution of the system of
equations in (J, R)

J(i) = m&?_)Hg(i,u,J,R), R({) = E de; J (1),
ue 1
1€Sy

Vie Sy, £=1,...,m.

e This follows from the fact that {dy | i =
1,...,n} is a probability distribution.

e View these equations as a set of Bellman equa-
tions for an “aggregate” DP problem. The differ-
ence is that the mapping H involves J(j) rather
than R(z(j)) for j € S.

e In an asynchronous version of the method, the
aggregate costs R({) may be outdated to account
for communication “delays” between aggregate states.

e (Convergence can be shown using the general
theory of asynchronous distributed computation,
briefly described in the 2nd lecture (see the text).
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