
6.231 DYNAMIC PROGRAMMING
 

LECTURE 5
 

LECTURE OUTLINE
 

• Review of approximate PI based on projected 
Bellman equations 

• Issues of policy improvement 

− Exploration enhancement in policy evalua­
tion
 

− Oscillations in approximate PI
 

• Aggregation – An alternative to the projected 
equation/Galerkin approach 

• Examples of aggregation 

• Simulation-based aggregation 

• Relation between aggregation and projected 
equations 
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REVIEW
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DISCOUNTED MDP
 

• System: Controlled Markov chain with states 
i = 1, . . . , n and finite set of controls u ∈ U(i) 

• Transition probabilities: pij(u) 

i j 

pij(u) 

pii(u) p j j(u ) 

pji(u) 

• Cost of a policy π = {µ0, µ1, . . .} starting at 
state i: 

  

N
 

( ) 

Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i = i0
N→∞ 

k=0 

with α ∈ [0, 1) 

• Shorthand notation for DP mappings 

n
 

( )

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n, 
u∈U(i) 

j=1 

n
 

( )( ( ) ) 

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n 

j=1 3

i j
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APPROXIMATE PI
 

Generate “Improved” Policy µ 

Initial Policy 

J̃µ(i, r) 
Evaluate Approximate Cost 

• Evaluation of typical policy µ: Linear cost func­
tion approximation 

J̃µ(r) = Φr 

where Φ is full rank n × s matrix with columns 
the basis functions, and ith row denoted φ(i)′ . 

• Policy “improvement” to generate µ: 
n 

( )

µ(i) = arg min pij(u) g(i, u, j) + αφ(j)′ r
u∈U(i) 

j=1 
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EVALUATION BY PROJECTED EQUATIONS
 

• Approximate policy evaluation by solving
 

Φr = ΠTµ(Φr)
 

Π: weighted Euclidean projection; special nature
 
of the steady-state distribution weighting. 

• Implementation by simulation (single long tra­
jectory using current policy - important to make 
ΠTµ a contraction). LSTD, LSPE methods. 

(λ)
• Multistep option: Solve Φr = ΠTµ (Φr) with 

∞ 

(λ) 
λℓT ℓ+1 Tµ = (1− λ) µ , 0 ≤ λ < 1 

ℓ=0 
(λ)

− As λ ↑ 1, ΠTµ becomes a contraction for 
any projection norm (allows changes in Π) 

− Bias-variance tradeoff 

Subspace S = {Φr | r ∈ ℜs} 

Jµ 

Simulation error 
ΠJµ 

Bias 

λ = 0 

λ = 1 

Solution of projected equation 

Simulation error 

Φr = ΠT (λ)(Φr) 
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ISSUES OF POLICY IMPROVEMENT
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EXPLORATION
 

• 1st major issue: exploration. To evaluate µ, 
we need to generate cost samples using µ 

• This biases the simulation by underrepresenting 
states that are unlikely to occur under µ. 

• As a result, the cost-to-go estimates of these 
underrepresented states may be highly inaccurate, 
and seriously impact the “improved policy” µ. 

• This is known as inadequate exploration - a 
particularly acute difficulty when the randomness 
embodied in the transition probabilities is “rela­
tively small” (e.g., a deterministic system). 

• To deal with this we must change the sampling
 
mechanism and modify the simulation formulas.
 

• Solve 
Φr = ΠTµ(Φr) 

where Π is projection with respect to an exploration-
enhanced norm [uses a weight distribution ζ = 
(ζ1, . . . , ζn)]. 

• ζ is more “balanced” than ξ the steady-state 
distribution of the Markov chain of µ. 

• This also addresses any lack of ergodicity of µ.
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EXPLORATION MECHANISMS
 

• One possibility: Use multiple short simulation 
trajectories instead of single long trajectory start­
ing from a rich mixture of states. This is known 
as geometric sampling, or free-form sampling. 

− By properly choosing the starting states, we 
enhance exploration 

− The simulation formulas for LSTD(λ) and 
LSPE(λ) have to be modified to yield the so­

(λ)
lution of Φr = ΠTµ (Φr) (see the DP text) 

• Another possibility: Use a modified policy to 
generate a single long trajectory. This is called an 
off-policy approach. 

− Modify the transition probabilities of µ to 
enhance exploration 

− Again the simulation formulas for LSTD(λ) 
and LSPE(λ) have to be modified to yield 

(λ)
the solution of Φr = ΠTµ (Φr) (use of im­
portance sampling; see the DP text) 

• With larger values of λ > 0 the contraction
 
(λ)

property of ΠTµ is maintained. 

(λ)
• LSTD may be used without ΠTµ being a con­
traction ... LSPE and TD require a contraction. 
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POLICY ITERATION ISSUES: OSCILLATIONS
 

• 2nd major issue: oscillation of policies 

• Analysis using the greedy partition of the space 
of weights r: Rµ is the set of parameter vectors r 
for which µ is greedy with respect to J̃(·; r) = Φr 

Rµ = r | Tµ(Φr) = T (Φr) ∀ µ 

If we use r in Rµ the next “improved” policy is µ 

r µ k 

r µ k+1 

r µ k+2 

r µ k+3 

R µ k 

R µ k+1 

R µ k+2 

R µ k+3 

• If policy evaluation is exact, there is a finite 
number of possible vectors rµ, (one per µ) 

• The algorithm ends up repeating some cycle of 
policies µk, µk+1 , . . . , µk+m with 

r k ∈ R k+1 , r ∈ R k+2 , . . . , r k+m ∈ Rk+1 kµ µ µ µ µ µ

• Many different cycles are possible 
9
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MORE ON OSCILLATIONS/CHATTERING
 

• In the case of optimistic policy iteration a dif­
ferent picture holds (policy evaluation does not 
produce exactly rµ) 

r µ 1 

r µ 2 

r µ 3 

R µ 1 

R µ 2 

R µ 3 

• Oscillations of weight vector r are less violent, 
but the “limit” point is meaningless! 

• Fundamentally, oscillations are due to the lack
 
of monotonicity of the projection operator, i.e.,
 

′ ′J ≤ J does not imply ΠJ ≤ ΠJ . 

• If approximate PI uses an evaluation of the form
 

Φr = (WTµ)(Φr) 

with W : monotone and WTµ: contraction, the 
policies converge (to a possibly nonoptimal limit). 

• These conditions hold when aggregation is used
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AGGREGATION
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PROBLEM APPROXIMATION - AGGREGATION
 

• Another major idea in ADP is to approximate 
J∗ or Jµ with the cost-to-go functions of a simpler 
problem. 

• Aggregation is a systematic approach for prob­
lem approximation. Main elements: 

− Introduce a few “aggregate” states, viewed 
as the states of an “aggregate” system 

− Define transition probabilities and costs of 
the aggregate system, by relating original 
system states with aggregate states 

−	 Solve (exactly or approximately) the “ag­
gregate” problem by any kind of VI or PI 
method (including simulation-based methods) 

• If R̂(y) is the optimal cost of aggregate state y, 
we use the approximation 

J∗(j) ≈ φjy R̂(y), ∀ j 
y 

where φjy are the aggregation probabilities, en­
coding the “degree of membership of j in the ag­
gregate state y” 

• This is a linear architecture: φjy are the features 
of state j 12
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HARD AGGREGATION EXAMPLE
 

• Group the original system states into subsets, 
and view each subset as an aggregate state 

• Aggregation probs.: φjy = 1 if j belongs to 
aggregate state y (piecewise constant approx). 

1 2 3 

4 5 6 

7 8 9 

x1 x2 

x3 x4 

Φ = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 0 0 0 
1 0 0 0 
0 1 0 0 
1 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 1 0 
0 0 0 1 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

• What should be the “aggregate” transition probs. 
out of x? 

• Select i ∈ x and use the transition probs. of i. 
But which i should I use? 

• The simplest possibility is to assume that all 
states i in x are equally likely. 

• A generalization is to randomize, i.e., use “dis­
aggregation probabilities” dxi: Roughly, the “de­
gree to which i is representative of x.” 
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according to with cost

S

, = 1

), ),

System States Aggregate States

�

Original Aggregate States

�

|

Original System States

Probabilities

�

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

�

Aggregation

Disaggregation Probabilities

Matrix D

pij(u),
ji

x y

AGGREGATION/DISAGGREGATION PROBS
 

dxi φjy Q 

Original 
System States 

Aggregate States 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

Matrix D Matrix Φ 

• Define the aggregate system transition proba­
bilities via two (somewhat arbitrary) choices. 

• For each original system state j and aggregate 
state y, the aggregation probability φjy 

− Roughly, the “degree of membership of j in 
the aggregate state y.” 

− In hard aggregation, φjy = 1 if state j be­
longs to aggregate state/subset y. 

• For each aggregate state x and original system 
state i, the disaggregation probability dxi 

− Roughly, the “degree to which i is represen­
tative of x.” 

• Aggregation scheme is defined by the two ma­
trices D and Φ. The rows of D and Φ must be 
probability distributions. 
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according to with cost

S

, = 1

), ),

System States Aggregate States

 

Original Aggregate States

 

|

Original System States

Probabilities

 

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

 

Aggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

  

  

AGGREGATE SYSTEM DESCRIPTION
 

dxi φjy Q 

Original 
System States 

p̂xy(u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)φjy , 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

ĝ(x, u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)g(i, u, j) 

, g(i, u, j) 

• The transition probability from aggregate state 
x to aggregate state y under control u 

n n 

ˆp̂xy(u) = dxi pij(u)φjy, or P (u) = DP (u)Φ 
i=1 j=1 

where the rows of D and Φ are the disaggregation 
and aggregation probs. 

• The expected transition cost is 

n n 

ĝ(x, u) = dxi pij(u)g(i, u, j), or ĝ = DP (u)g 
i=1 j=1 
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AGGREGATE BELLMAN’S EQUATION
 

dxi φjy Q 

Original 
System States 

p̂xy(u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)φjy , 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

ĝ(x, u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)g(i, u, j) 

, g(i, u, j) 

• The optimal cost function of the aggregate prob­
lem, denoted R̂, is 

R̂(x) = min ĝ(x, u) + α p̂xy(u)R̂(y) , ∀ x 
u∈U 

y 

Bellman’s equation for the aggregate problem. 

• The optimal cost function J∗ of the original 
problem is approximated by J̃ given by 

˜ ˆJ(j) = φjy R(y), ∀ j 
y 
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EXAMPLE I: HARD AGGREGATION
 

• Group the original system states into subsets, 
and view each subset as an aggregate state 

• Aggregation probs.: φjy = 1 if j belongs to 
aggregate state y. 

1 2 3 

4 5 6 

7 8 9 

x1 x2 

x3 x4 

Φ = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 0 0 0 
1 0 0 0 
0 1 0 0 
1 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 1 0 
0 0 0 1 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

• Disaggregation probs.: There are many possi­
bilities, e.g., all states i within aggregate state x 
have equal prob. dxi. 

• If optimal cost vector J∗ is piecewise constant 
over the aggregate states/subsets, hard aggrega­
tion is exact. Suggests grouping states with “roughly 
equal” cost into aggregates. 

• A variant: Soft aggregation (provides “soft 
boundaries” between aggregate states). 
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Special Aggregate States Features
)

Special States FeaturesSpecial States Aggregate States

Feature Extraction Mapping Vector
Feature Mapping Feature Vector

States Aggregate StatesFeatures

Feature
Extraction

EXAMPLE II: FEATURE-BASED AGGREGATION
 

• Important question: How do we group states 
together? 

• If we know good features, it makes sense to
 
group together states that have “similar features”
 

• A general approach for passing from a feature-
based state representation to a hard aggregation-
based architecture 

• Essentially discretize the features and generate 
a corresponding piecewise constant approximation 
to the optimal cost function 

• Aggregation-based architecture is more power­
ful (it is nonlinear in the features) 

• ... but may require many more aggregate states 
to reach the same level of performance as the cor­
responding linear feature-based architecture 
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EXAMPLE III: REP. STATES/COARSE GRID
 

• Choose a collection of “representative” original 
system states, and associate each one of them with 
an aggregate state 

x 

j2 

j3 

j1 

y1 y2 

y3 

Original State Space 

Representative/Aggregate States 

• Disaggregation probabilities are dxi = 1 if i is 
equal to representative state x. 

• Aggregation probabilities associate original sys­
tem states with convex combinations of represen­
tative states 

j ∼ φjyy 

y∈A 

• Well-suited for Euclidean space discretization
 

• Extends nicely to continuous state space, in­
cluding belief space of POMDP 
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φ

φ

EXAMPLE IV: REPRESENTATIVE FEATURES
 

• Here the aggregate states are nonempty subsets 
of original system states. Common case: Each Sx 

is a group of states with “similar features” 

Original State Space 

Aggregate States/Subsets 

Sx1 Sx2 

Sx3 

j 

j
i 

pij 

pij 

φjx1 

φjx2 

φjx3 

• Restrictions: 

− The aggregate states/subsets are disjoint. 

− The disaggregation probabilities satisfy dxi > 

0 if and only if i ∈ x. 

− The aggregation probabilities satisfy φjy = 1 
for all j ∈ y. 

• Hard aggregation is a special case: ∪xSx = 
{1, . . . , n} 

• Aggregation with representative states is a spe­
cial case: Sx consists of just one state 
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APPROXIMATE PI BY AGGREGATION
 

dxi φjy Q 

Original 
System States 

p̂xy(u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)φjy , 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

ĝ(x, u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)g(i, u, j) 

, g(i, u, j) 

• Consider approximate PI for the original prob­
lem, with policy evaluation done by aggregation.
 

• Evaluation of policy µ: J̃ = ΦR, where R = 
DTµ(ΦR) (R is the vector of costs of aggregate 
states for µ). Can be done by simulation. 

• Looks like projected equation ΦR = ΠTµ(ΦR) 
(but with ΦD in place of Π). 

• Advantage: It has no problem with oscillations.
 

• Disadvantage: The rows of D and Φ must be 
probability distributions. 
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ADDITIONAL ISSUES OF AGGREGATION
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pij(u),
ji

x y

ALTERNATIVE POLICY ITERATION
 

• The preceding PI method uses policies that as­
sign a control to each aggregate state. 

• An alternative is to use PI for the combined 
system, involving the Bellman equations: 

n 

R∗(x) = dxi J̃0(i), ∀ x, 
i=1 

n 
( )

J̃0(i) = min pij(u) g(i, u, j)+αJ̃1(j) , i = 1, . . . , n, 
u∈U(i) 

j=1 

J̃1(j) = φjyR∗(y), j = 1, . . . , n.
 
y∈A
 

dxi φjy Q 

Original 
System States 

Aggregate States 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

Matrix D Matrix Φ 

• Simulation-based PI and VI are still possible.
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RELATION OF AGGREGATION/PROJECTION
 

• Compare aggregation and projected equations
 

ΦR = ΦDT (ΦR), Φr = ΠT (Φr)
 

• If ΦD is a projection (with respect to some 
weighted Euclidean norm), then the methodology 
of projected equations applies to aggregation 

• Hard aggregation case: ΦD can be verified to be 
projection with respect to weights ξi proportional 
to the disaggregation probabilities dxi 

• Aggregation with representative features case: 
ΦD can be verified to be a semi-norm projection 
with respect to weights ξi proportional to dxi 

• A (weighted) Euclidean semi-norm is defined by
 
 

L
( )2nIJIξ = ξi J(i) , where ξ = (ξ1, . . . , ξn), i=1 

with ξi≥ 0. 

• If Φ′ΞΦ is invertible, the entire theory and 
algorithms of projected equations generalizes to 
semi-norm projected equations [including multi­
step methods such as LSTD/LSPE/TD(λ)]. 

• Reference: Yu and Bertsekas, “Weighted Bell­
man Equations and their Applications in Approxi­
mate Dynamic Programming,” MIT Report, 2012.
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DISTRIBUTED AGGREGATION I
 

• We consider decomposition/distributed solu­
tion of large-scale discounted DP problems by hard 
aggregation. 

• Partition the original system states into subsets 
S1, . . . , Sm. 

• Distributed VI Scheme: Each subset Sℓ 

− Maintains detailed/exact local costs 

J(i) for every original system state i ∈ Sℓ 

using aggregate costs of other subsets 
L 

− Maintains an aggregate cost R(ℓ) = i∈Sℓ 
dℓiJ(i) 

− Sends R(ℓ) to other aggregate states 

• J(i) and R(ℓ) are updated by VI according to 

Jk+1(i) = min Hℓ(i, u, Jk, Rk), ∀ i ∈ Sℓ 
u∈U(i) 

with Rk being the vector of R(ℓ) at time k, and 

n 

Hℓ(i, u, J, R) = pij(u)g(i, u, j) + α pij(u)J(j) 

j=1 j∈Sℓ 

25
+ α pij(u)R(ℓ ′ ) 

j∈S
ℓ ′ , ℓ′=� ℓ 
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DISTRIBUTED AGGREGATION II 

• Can show that this iteration involves a sup-
norm contraction mapping of modulus α, so it 
converges to the unique solution of the system of 
equations in (J,R) 

J(i) = min Hℓ(i, u, J,R), R(ℓ) = dℓiJ(i), 
u∈U(i) 

i∈Sℓ 

∀ i ∈ Sℓ, ℓ = 1, . . . ,m. 

• This follows from the fact that {dℓi | i = 
1, . . . , n} is a probability distribution. 

• View these equations as a set of Bellman equa­
tions for an “aggregate” DP problem. The differ­
ence is that the mapping H involves J(j) rather
 

( )

than R x(j) for j ∈ Sℓ. 

• In an asynchronous version of the method, the 
aggregate costs R(ℓ) may be outdated to account 
for communication “delays” between aggregate states. 

• Convergence can be shown using the general
 
theory of asynchronous distributed computation,
 
briefly described in the 2nd lecture (see the text).
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