APPROXIMATE DYNAMIC PROGRAMMING
LECTURE 3

LECTURE OUTLINE

e Review of discounted DP

e Introduction to approximate DP

e Approximation architectures

e Simulation-based approximate policy iteration
e Approximate policy evaluation

e Some general issues about approximation and
simulation

REVIEW

DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system with arbitrary state space

Lk+1 :f(:ck,uk,wk), k:(),l,...

e Cost of a policy m = {uo, 1, ...}

Jx(xo) = lim F {Z@kg(xkaﬂk(xk)awk)}

N —o0 W
k=0,1,... k=0

with a < 1, and for some M, we have |g(z, u, w)| <
M for all (z,u,w)

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min E{g(a:,u,w)+aJ(f(x,u,w))},‘v’x

uweU(x) w

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J

e For any stationary policy

(T,)(@) = B {g(w,n(@),w) + ad (f (@, u(@),w) } Vo

3

MDP - TRANSITION PROBABILITY NOTATION

e We will mostly assume the system is an n-state
(controlled) Markov chain
e We will often switch to Markov chain notation
— States i =1,...,n (instead of x)
— Transition probabilities p;,;,., (u) |instead
of xxvr1 = f(xk, uk, wi)]
— Stage cost g(ig, U, ix11) [instead of g(xg, ug, wi)]
— Cost functions J = (J(1),...,J(n)) (vec-
tors in Rn)

e Cost of a policy m = {uo, 1, ...}

N-1
Jr(i) = lim_ E {];) ok g (ig, s (in), ikv1) | o = Z}
k=1,2,... =

e Shorthand notation for DP mappings

“SHORTHAND” THEORY - A SUMMARY

e DBellman’s equation: J* =TJ*, J, =1,,J, or

n

J* (1) =u2n[}r<li)zpm(w(g(z u,j) +aJ* (), Vi

e Optimality condition:
p: optimal <==> 1T, ,J*=TJ*

l.e.,

c ; J)rad (), Vi
u(i) € arg min Zpg (9(i,u,) +at*(j), Vi

THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any J € R»

J*(i) = lim (T*J)(7), Vi=1,...,n

k— o0

e Policy iteration: Given u*
— Policy evaluation: Find J,» by solving

Zp’bj 7/Lk(7;)7j)+04<],u’f(j))7 1=1,...

or Jluk = TMk:JMk:

— Policy improvement: Let p*+1! be such that

k—l—l . . .
p (i) € argurenl}%)zpw (i, u, j)+ad 1 (5)), Vi

or Tluk—i—l J,u"“ = TJ,LL’“

e Policy evaluation is equivalent to solving an
n X n linear system of equations

e For large n, exact PI is out of the question. We
use instead optimistic PI (policy evaluation with

a few VIs) ¢

,

APPROXIMATE DP

GENERAL ORIENTATION TO ADP

e ADP (late 80s - present) is a breakthrough
methodology that allows the application of DP to
problems with many or infinite number of states.
e Other names for ADP are:

— “reinforcement learning” (RL).

— “neuro-dynamic programming” (NDP).

— “adaptive dynamic programming” (ADP).

e We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

e Extensions to other DP models (continuous
space, continuous-time, not discounted) are possi-
ble (but more quirky). We will set aside for later.
e There are many approaches:

— Problem approximation

— Simulation-based approaches (we will focus

on these)

e Simulation-based methods are of three types:

— Rollout (we will not discuss further)

— Approximation in value space

— Approximation in policy space

8

WHY DO WE USE SIMULATION?

e One reason: Computational complexity advan-
tage in computing sums/expectations involving a
very large number of terms

— Any sum
n
2%
i=1

can be written as an expected value:

Yo=Yeg =g}

where ¢ is any prob. distribution over {1,...,n}

— It can be approximated by generating many
samples {i1,...,it} from {1,...,n}, accord-
ing to distribution &, and Monte Carlo aver-
aging:

- i 1 iy
S

e Simulation is also convenient when an analytical
model of the system is unavailable, but a simula-
tion/computer model is possible.

9

APPROXIMATION IN VALUE AND

POLICY SPACE

10

APPROXIMATION IN VALUE SPACE

e Approximate J* or J, from a parametric class
J(i;r) where i is the current state and r = (r1,...,7m)
is a vector of “tunable” scalars weights

e Use J in place of J* or J,, in various algorithms
and computations

e Role of r: By adjusting r we can change the
“shape” of J so that it is “close” to J* or J,

e Two key issues:

— The choice of parametric class J(i;7) (the
approximation architecture)

— Method for tuning the weights (“training”
the architecture)

e Success depends strongly on how these issues
are handled ... also on insight about the problem

e A simulator may be used, particularly when
there is no mathematical model of the system (but
there is a computer model)

e We will focus on simulation, but this is not the
only possibility

e We may also use parametric approximation for
(Q-factors or cost function differences

1"

APPROXIMATION ARCHITECTURES

e Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J(i;7) on r]

e Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

e Computer chess example:

— Think of board position as state and move
as control

— Uses a feature-based position evaluator that
assigns a score (or approximate ()-factor) to
each position/move

, 1
: 1
; 1
! Features: :
| Material balance, :
: Mobility, :
. :
; |
1

1

I aWws X Safety etC . . S

A4iAa Aki ! core
et Feature .| Weighting

Extraction of Features

Position Evaluator

e Relatively few special features and weights, and
multistep lookahead

12

LINEAR APPROXIMATION ARCHITECTURES

e Often, the features encode much of the nonlin-
earity inherent in the cost function approximated

e Then the approximation may be quite accurate
without a complicated architecture (as an extreme
example, the ideal feature is the true cost func-

tion)

e With well-chosen features, we can use a linear
architecture: J(i;r) = ¢(i)'r,i=1,...,n, or

J(r

) — (I)T = Z (I)jTj
71=1

®: the matrix whose rows are ¢(7)’, @

®; is the jth column of @

State i | Feature Extraction
—p .
Mapping

Feature Vector ¢(i) Linear

L

Mapping

=1,...,n,

Linear Cost
Approximator ¢(i)'r

>

e This is approximation on the subspace

S = {®r|re Rs)

spanned by the columns of ® (basis functions)

e Many examples of feature types: Polynomial
approximation, radial basis functions, etc

13

ILLUSTRATIONS: POLYNOMIAL TYPE

e Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be ¢ =
(41,...,%q) (i-e., have ¢ “dimensions”) and define

Linear approximation architecture:

Z r)=ro+ E Tkik + g g Tkmlklm,

k=1 m=k

where r has components rg, 7, and rg,.

e Interpolation: A subset I of special/representative

states is selected, and the parameter vector r has
one component r; per state ¢ € I. The approxi-
mating function is

j(i;r):ri, 1e 1,

~

» 4

J(2;r) = interpolation using the values at i € I, 1 ¢ [

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.

14

A DOMAIN SPECIFIC EXAMPLE

o Tetris game (used as testbed in competitions)

Possible
actions

Chosen
action

Possible
next states

e J*(1): optimal score starting from position ¢
e Number of states > 2200 (for 10 x 20 board)

e Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)

15

APPROX. PI - OPTION TO APPROX. J, OR Q,

e Use simulation to approximate the cost .J, of
the current policy u

e Generate “improved” policy &z by minimizing in
(approx.) Bellman equation

Initial Policy

l

Evaluate Approximate Cost Approximate Policy

r> Jﬂ(ia T)

|

L— Generate “Improved” Policy 1 Policy Improvement

Evaluation

e Altenatively approximate the ()-factors of u

Initial Policy

'

Evaluate A]gjproximate Q-Factors| Approximate Policy
Qu(t,u,m) Evaluation
<« roved” Policy 1

. . , Policy Improvement
M(Z) = arg MmNy cy(s) Qu (,La u, T)

16

APPROXIMATING J* OR Q*

e Approximation of the optimal cost function J*

— ()-Learning: Use a simulation algorithm to
approximate the Q-factors

Q+(i,u) = g(i,u) + a Y pi(u)J*(j);

j=1
and the optimal costs
J*(i) = min Q* (¢, u)

ueU (1)
— Bellman Error approach: Find r to

mrin Ez{ (j(z, r) — (TJ) (¢ "“))2}

where F;{-} is taken with respect to some
distribution over the states

— Approximate Linear Programming (we will
not discuss here)

e ()-learning can also be used with approxima-
tions

e ()-learning and Bellman error approach can also
be used for policy evaluation

17

APPROXIMATION IN POLICY SPACE

e A brief discussion; we will return to it later.
e Use parametrization u(i;r) of policies with a
vector r = (r1,...,7s). Examples:

— Polynomial, e.g., u(i;r) =ry +1r2 -1+ 13 - 12

— Linear feature-based

p(isr) = ¢1(2) - r1 + ¢2(i) - 12
e Optimize the cost over r. For example:

— Each value of r defines a stationary policy,
with cost starting at state ¢ denoted by J(; 7).

— Let (p1,...,pn) be some probability distri-
bution over the states, and minimize over r

> pid(isr)
=1

— Use arandom search, gradient, or other method

e A special case: The parameterization of the
policies is indirect, through a cost approximation
architecture J, 1.e.,

p(isr) € arg réﬂ&{l)zpw (i u,) + @t (5;7)

APPROXIMATE POLICY EVALUATION

METHODS

19

DIRECT POLICY EVALUATION

e Approximate the cost of the current policy by
using least squares and simulation-generated cost
samples

e Amounts to projection of J, onto the approxi-
mation subspace

0
Subspace S = {®r | r € Rs}

Direct Method: Projection of
cost vector J,

e Solution by least squares methods
e Regular and optimistic policy iteration

e Nonlinear approximation architectures may also
be used

20

DIRECT EVALUATION BY SIMULATION

e Projection by Monte Carlo Simulation: Com-
pute the projection I1.J,, of J, on subspace S =
{®r | r € Rs}, with respect to a weighted Eu-
clidean norm || - ||¢

e Equivalently, find ®r*, where

r* = arg min

¢_J 2: 7
min || &r ullg argmme

e Setting to 0 the gradient at r*,

_ (Z &;gb(i)gb(i)’) Zf@(%)«h(%)

e Generate samples (i1, J,(41)), ..., (2k, Ju(ik))
using distribution &

e Approximate by Monte Carlo the two “expected
values” with low-dimensional calculations

k 1o
k= (Z ¢(it)¢(it)’> > d(it) Ju(ir)

e Equivalent least squares alternative calculation:
k

Fi = arg min (@(ie)'r — Ju(it))Q
t=1

21

INDIRECT POLICY EVALUATION

e An example: Galerkin approximation

e Solve the projected equation &r = IIT),,(Pr)
where II is projection w/ respect to a suitable
weighted FEuclidean norm

> 11J, Tr = 1T, (D7)
0 0
Subspace S = {®r | r € Rs} Subspace S = {®r | r € Rs}
Direct Method: Projection of Indirect Method: Solving a projected
cost vector J, form of Bellman’s equation

e Solution methods that use simulation (to man-
age the calculation of II)

— TD(\): Stochastic iterative algorithm for solv-
ing &r = I17T),(®r)

— LSTD(\): Solves a simulation-based approx-
imation w/ a standard solver

— LSPE()M): A simulation-based form of pro-
jected value iteration; essentially

briq1 = 11T, (Pry) + simulation noise

22

BELLMAN EQUATION ERROR METHODS

e Another example of indirect approximate policy
evaluation:

min || ®r — TM(CI)T)HE (%)

where || - ||¢ is Euclidean norm, weighted with re-
spect to some distribution &

e It is closely related to the projected equation/Galerkin
approach (with a special choice of projection norm)

e Several ways to implement projected equation
and Bellman error methods by simulation. They
involve:

— Generating many random samples of states
1, using the distribution &

— Generating many samples of transitions (ix, jx)
using the policy u

— Form a simulation-based approximation of
the optimality condition for projection prob-
lem or problem (*) (use sample averages in
place of inner products)

— Solve the Monte-Carlo approximation of the
optimality condition
e Issues for indirect methods: How to generate
the samples? How to calculate r* efficiently?

23

ANOTHER INDIRECT METHOD: AGGREGATION

o A first idea: Group similar states together into
“aggregate states” xi,...,Ts; assign a common
cost value r; to each group x;.

e Solve an “aggregate” DP problem, involving the
aggregate states, to obtain r = (r1,...,rs). This
is called hard aggregation

0

—_
)

w
——

OO OO R MR O F =

OO O OO+ OO
O LR R OO O oo
o

L)

~

e More general/mathematical view: Solve
br = DT, (Pr)

where the rows of D and ® are prob. distributions
(e.g., D and ® “aggregate” rows and columns of
the linear system J =1T,,J)

e Compare with projected equation ®r = I1T,,(Pr).
Note: @D is a projection in some interesting cases

24

AGGREGATION AS PROBLEM APPROXIMATION

Original

System States

DPij ('UJ)7 g(Z, u?])

Disaggregation Aggregation
Probabilities Probabilities
dxz' * * ¢jy

e Aggregation can be viewed as a systematic
approach for problem approximation. Main ele-
ments:

— Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

— Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

e Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach 2

APPROXIMATE POLICY ITERATION

ISSUES

26

THEORETICAL BASIS OF APPROXIMATE PI

e If policies are approximately evaluated using an
approximation architecture such that

max | J(i,7) — Jr(3)] < 6, k=0,1,...

ILL —

e If policy improvement is also approximate,

max | (T J) (i, 1) — (T)iy i) < e, k=0,1,...

e Error bound: The sequence {uF} generated by
approximate policy iteration satisfies

€ + 20
’ N e <
1lrﬁri>solipm?x S (1) — J*(1) < 1— o)

e 'T'ypical practical behavior: The method makes
steady progress up to a point and then the iterates

J,x oscillate within a neighborhood of J*.

e Oscillations are quite unpredictable.

— Some bad examples of oscillations have been
constructed.

— In practice oscillations between policies is
probably not the major concern.

27

THE ISSUE OF EXPLORATION

e To evaluate a policy i, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under u

e (Cost-to-go estimates of underrepresented states
may be highly inaccurate

e This seriously impacts the improved policy &

e This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system)

e Some remedies:

— Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

— QOccasionally generate transitions that use a
randomly selected control rather than the
one dictated by the policy u

— Other methods: Use two Markov chains (one
is the chain of the policy and is used to gen-
erate the transition sequence, the other is
used to generate the state sequence).

28

APPROXIMATING Q-FACTORS

e Given J(i;r), policy improvement requires a
model [knowledge of p;;(u) for all controls u €
U (i)

e Model-free alternative: Approximate (J-factors
’I, Uu; ’I“ szj 7/ ’U,,])—FOZJM(])

and use for policy improvement the minimization

€ arg min 1, U T
(1) g I U@)Q()

e 7 is an adjustable parameter vector and Q (¢, u;)
is a parametric architecture, such as

(4, u;r) Zrmqﬁmzu

e We can adapt any of the cost approximation
approaches, e.g., projected equations, aggregation

e Use the Markov chain with states (,u), so
pii(p(2)) is the transition prob. to (7, u(2)), 0 to
other (7, u/)

e Major concern: Acutely diminished exploration

29

SOME GENERAL ISSUES

30

STOCHASTIC ALGORITHMS: GENERALITIES

e (Consider solution of a linear equation x = b +
Ax by using m simulation samples b + w; and
A+Wyi, k=1,...,m, where wy, W) are random,
e.g., “simulation noise”

e Think of x = b+ Ax as approximate policy
evaluation (projected or aggregation equations)

e Stoch. approx. (SA) approach: Fork=1,...,m

vrt1 = (1= y)wr + 75 (0 + wi) + (A + W)y

e Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates of b and A

I%Zb—l—wk Z%ZAJer

Then solve x = b,,, + A, x by matrix inversion
=(1—An) 1oy

or iteratively
e TD()\) and Q-learning are SA methods
o LSTD()N) and LSPE()) are MCE methods

31

COSTS OR COST DIFFERENCES?

e (Consider the exact policy improvement process.
To compare two controls v and v’ at x, we need

E g(z,u,w) —g(x,v,w)+a J,(T) — JM(E’))}

where T = f(x,u,w) and T’ = f(z,u/, w)

e Approximate J,(T) or

e Approximating D, (Z,T') avoids “noise differ-
encing”. This can make a big difference

e [mportant point: D, satisfies a Bellman equa-
tion for a system with “state” (x,z’)

DM(ZC?CU,) — E{GM(va,aw) + O‘Dﬂ(fa E/)}
where T = f(x,,u(x),w), T = f(a:’,,u,(x’),w) and

Gu(xvx,v w) — g(xnu(x)v w) — g(xlv /"’(x,)7w)

e D, can be “learned” by the standard methods
(TD, LSTD, LSPE, Bellman error, aggregation,
etc). This is known as differential training.

32

AN EXAMPLE (FROM THE NDP TEXT)

e System and cost per stage:
Tpi1 = Tk + Sug, g(z,u) = d6(x? + u?)

0 > 0 is very small; think of discretization of
continuous-time problem involving dx(t) /dt = u(t)

e Consider policy pu(x) = —2x. Its cost function
1S
Ha?

Ju(x) = 1 —(14+9) +0(62)
and its Q-factor is

Ha? 92

Qux,u) = e +0 (T + u? + gxu> + O(42)

e The important part for policy improvement is

) (uQ + gxu>

‘When Jy(z) [or Qu(z,u)] is approximated by
Ju(x;7r) lor by Qu(x,u;r)], it will be dominated
by 22 and will be “lost”

33

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

