## APPROXIMATE DYNAMIC PROGRAMMING

## LECTURE 2

#### LECTURE OUTLINE

- Review of discounted problem theory
- Review of shorthand notation
- Algorithms for discounted DP
- Value iteration
- Various forms of policy iteration
- Optimistic policy iteration
- Q-factors and Q-learning
- Other DP models Continuous space and time
- A more abstract view of DP
- Asynchronous algorithms

# DISCOUNTED PROBLEMS/BOUNDED COST

Stationary system with arbitrary state space

$$x_{k+1} = f(x_k, u_k, w_k), \qquad k = 0, 1, \dots$$

• Cost of a policy  $\pi = \{\mu_0, \mu_1, \ldots\}$ 

$$J_{\pi}(x_0) = \lim_{N \to \infty} \mathop{E}_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

with  $\alpha < 1$ , and for some M, we have  $|g(x, u, w)| \le M$  for all (x, u, w)

• Shorthand notation for DP mappings (operate on functions of state to produce other functions)

$$(TJ)(x) = \min_{u \in U(x)} \mathop{E}_{w} \left\{ g(x, u, w) + \alpha J \left( f(x, u, w) \right) \right\}, \ \forall \ x$$

TJ is the optimal cost function for the one-stage problem with stage cost g and terminal cost  $\alpha J$ .

• For any stationary policy  $\mu$ 

$$(T_{\mu}J)(x) = E_{w} \left\{ g(x, \mu(x), w) + \alpha J(f(x, \mu(x), w)) \right\}, \forall x$$

## "SHORTHAND" THEORY – A SUMMARY

• Bellman's equation:  $J^* = TJ^*, J_{\mu} = T_{\mu}J_{\mu}$  or

$$J^*(x) = \min_{u \in U(x)} \mathop{E}_{w} \left\{ g(x, u, w) + \alpha J^* \big( f(x, u, w) \big) \right\}, \ \forall \ x$$

$$J_{\mu}(x) = E_{w} \left\{ g(x, \mu(x), w) + \alpha J_{\mu} \left( f(x, \mu(x), w) \right) \right\}, \forall x$$

• Optimality condition:

$$\mu$$
: optimal  $\langle ==>$   $T_{\mu}J^*=TJ^*$ 

i.e.,

$$\mu(x) \in \arg\min_{u \in U(x)} \mathop{E}_{w} \left\{ g(x, u, w) + \alpha J^* \left( f(x, u, w) \right) \right\}, \ \forall \ x$$

• Value iteration: For any (bounded) J

$$J^*(x) = \lim_{k \to \infty} (T^k J)(x), \qquad \forall \ x$$

- Policy iteration: Given  $\mu^k$ ,
  - Find  $J_{\mu^k}$  from  $J_{\mu^k} = T_{\mu^k} J_{\mu^k}$  (policy evaluation); then
  - Find  $\mu^{k+1}$  such that  $T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$  (policy improvement)

#### MAJOR PROPERTIES

• Monotonicity property: For any functions J and J' on the state space X such that  $J(x) \leq J'(x)$  for all  $x \in X$ , and any  $\mu$ 

$$(TJ)(x) \le (TJ')(x), \quad (T_{\mu}J)(x) \le (T_{\mu}J')(x), \quad \forall x \in X$$

• Contraction property: For any bounded functions J and J', and any  $\mu$ ,

$$\max_{x} \left| (TJ)(x) - (TJ')(x) \right| \le \alpha \max_{x} \left| J(x) - J'(x) \right|,$$

$$\max_{x} \left| (T_{\mu}J)(x) - (T_{\mu}J')(x) \right| \le \alpha \max_{x} \left| J(x) - J'(x) \right|$$

• Compact Contraction Notation:

$$||TJ-TJ'|| \le \alpha ||J-J'||, ||T_{\mu}J-T_{\mu}J'|| \le \alpha ||J-J'||,$$

where for any bounded function J, we denote by ||J|| the sup-norm

$$||J|| = \max_{x} |J(x)|$$

## THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

$$J^*(x) = \lim_{k \to \infty} (T^k J)(x), \qquad \forall \ x$$

- Policy iteration: Given  $\mu^k$ 
  - Policy evaluation: Find  $J_{\mu^k}$  by solving

$$J_{\mu^{k}}(x) = E_{w} \left\{ g(x, \mu^{k}(x), w) + \alpha J_{\mu^{k}} \left( f(x, \mu^{k}(x), w) \right) \right\}, \ \forall \ x$$

or 
$$J_{\mu^k} = T_{\mu^k} J_{\mu^k}$$

- Policy improvement: Let  $\mu^{k+1}$  be such that

$$\mu^{k+1}(x) \in \arg\min_{u \in U(x)} \mathop{E}_{w} \left\{ g(x, u, w) + \alpha J_{\mu^{k}} \left( f(x, u, w) \right) \right\}, \ \forall \ x$$

or 
$$T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$$

- For the case of n states, policy evaluation is equivalent to solving an  $n \times n$  linear system of equations:  $J_{\mu} = g_{\mu} + \alpha P_{\mu} J_{\mu}$
- For large n, exact PI is out of the question (even though it terminates finitely as we will show)

## JUSTIFICATION OF POLICY ITERATION

- We can show that  $J_{\mu^k} \geq J_{\mu^{k+1}}$  for all k
- Proof: For given k, we have

$$J_{\mu^k} = T_{\mu^k} J_{\mu^k} \ge T J_{\mu^k} = T_{\mu^{k+1}} J_{\mu^k}$$

Using the monotonicity property of DP,

$$J_{\mu^k} \ge T_{\mu^{k+1}} J_{\mu^k} \ge T_{\mu^{k+1}}^2 J_{\mu^k} \ge \dots \ge \lim_{N \to \infty} T_{\mu^{k+1}}^N J_{\mu^k}$$

• Since

$$\lim_{N \to \infty} T_{\mu^{k+1}}^N J_{\mu^k} = J_{\mu^{k+1}}$$

we have  $J_{\mu^k} \geq J_{\mu^{k+1}}$ .

- If  $J_{\mu^k} = J_{\mu^{k+1}}$ , all above inequalities hold as equations, so  $J_{\mu^k}$  solves Bellman's equation. Hence  $J_{\mu^k} = J^*$
- Thus at iteration k either the algorithm generates a strictly improved policy or it finds an optimal policy
  - For a finite spaces MDP, the algorithm terminates with an optimal policy
  - For infinite spaces MDP, convergence (in an infinite number of iterations) can be shown

## OPTIMISTIC POLICY ITERATION

- Optimistic PI: This is PI, where policy evaluation is done approximately, with a finite number of VI
- So we approximate the policy evaluation

$$J_{\mu} \approx T_{\mu}^m J$$

for some number  $m \in [1, \infty)$  and initial J

• Shorthand definition: For some integers  $m_k$ 

$$T_{\mu^k}J_k = TJ_k, \qquad J_{k+1} = T_{\mu^k}^{m_k}J_k, \qquad k = 0, 1, \dots$$

- If  $m_k \equiv 1$  it becomes VI
- If  $m_k = \infty$  it becomes PI
- Converges for both finite and infinite spaces discounted problems (in an infinite number of iterations)
- Typically works faster than VI and PI (for large problems)

### APPROXIMATE PI

• Suppose that the policy evaluation is approximate,

$$||J_k - J_{\mu^k}|| \le \delta, \qquad k = 0, 1, \dots$$

and policy improvement is approximate,

$$||T_{\mu^{k+1}}J_k - TJ_k|| \le \epsilon, \qquad k = 0, 1, \dots$$

where  $\delta$  and  $\epsilon$  are some positive scalars.

• Error Bound I: The sequence  $\{\mu^k\}$  generated by approximate policy iteration satisfies

$$\limsup_{k \to \infty} \|J_{\mu^k} - J^*\| \le \frac{\epsilon + 2\alpha\delta}{(1 - \alpha)^2}$$

- Typical practical behavior: The method makes steady progress up to a point and then the iterates  $J_{\mu^k}$  oscillate within a neighborhood of  $J^*$ .
- Error Bound II: If in addition the sequence  $\{\mu^k\}$  "terminates" at  $\overline{\mu}$  (i.e., keeps generating  $\overline{\mu}$ )

$$||J_{\overline{\mu}} - J^*|| \le \frac{\epsilon + 2\alpha\delta}{1 - \alpha}$$

## Q-FACTORS I

• Optimal Q-factor of (x, u):

$$Q^*(x, u) = E\left\{g(x, u, w) + \alpha J^*(\overline{x})\right\}$$

with  $\overline{x} = f(x, u, w)$ . It is the cost of starting at x, applying u is the 1st stage, and an optimal policy after the 1st stage

• We can write Bellman's equation as

$$J^*(x) = \min_{u \in U(x)} Q^*(x, u), \qquad \forall \ x,$$

• We can equivalently write the VI method as

$$J_{k+1}(x) = \min_{u \in U(x)} Q_{k+1}(x, u), \quad \forall x,$$

where  $Q_{k+1}$  is generated by

$$Q_{k+1}(x,u) = E\left\{g(x,u,w) + \alpha \min_{v \in U(\overline{x})} Q_k(\overline{x},v)\right\}$$

with 
$$\overline{x} = f(x, u, w)$$

## Q-FACTORS II

- Q-factors are costs in an "augmented" problem where states are (x, u)
- They satisfy a Bellman equation  $Q^* = FQ^*$  where

$$(FQ)(x,u) = E\left\{g(x,u,w) + \alpha \min_{v \in U(\overline{x})} Q(\overline{x},v)\right\}$$

where  $\overline{x} = f(x, u, w)$ 

- VI and PI for Q-factors are mathematically equivalent to VI and PI for costs
- They require equal amount of computation ... they just need more storage
- Having optimal Q-factors is convenient when implementing an optimal policy on-line by

$$\mu^*(x) = \min_{u \in U(x)} Q^*(x, u)$$

- Once  $Q^*(x, u)$  are known, the model [g] and  $E\{\cdot\}$  is not needed. Model-free operation
- Q-Learning (to be discussed later) is a sampling method that calculates  $Q^*(x, u)$  using a simulator of the system (no model needed)

## OTHER DP MODELS

- We have looked so far at the (discrete or continuous spaces) discounted models for which the analysis is simplest and results are most powerful
- Other DP models include:
  - Undiscounted problems ( $\alpha = 1$ ): They may include a special termination state (stochastic shortest path problems)
  - Continuous-time finite-state MDP: The time between transitions is random and state-andcontrol-dependent (typical in queueing systems, called Semi-Markov MDP). These can be viewed as discounted problems with stateand-control-dependent discount factors
- Continuous-time, continuous-space models: Classical automatic control, process control, robotics
  - Substantial differences from discrete-time
  - Mathematically more complex theory (particularly for stochastic problems)
  - Deterministic versions can be analyzed using classical optimal control theory
  - Admit treatment by DP, based on time discretization

## CONTINUOUS-TIME MODELS

- System equation: dx(t)/dt = f(x(t), u(t))
- Cost function:  $\int_0^\infty g(x(t), u(t))$
- Optimal cost starting from  $x: J^*(x)$
- $\delta$ -Discretization of time:  $x_{k+1} = x_k + \delta \cdot f(x_k, u_k)$
- Bellman equation for the  $\delta$ -discretized problem:

$$J^*_{\delta}(x) = \min_{u} \left\{ \delta \cdot g(x, u) + J^*_{\delta} \left( x + \delta \cdot f(x, u) \right) \right\}$$

• Take  $\delta \to 0$ , to obtain the Hamilton-Jacobi-Bellman equation [assuming  $\lim_{\delta \to 0} J_{\delta}^*(x) = J^*(x)$ ]

$$0 = \min_{u} \left\{ g(x, u) + \nabla J^*(x)' f(x, u) \right\}, \quad \forall x$$

- Policy Iteration (informally):
  - Policy evaluation: Given current  $\mu$ , solve

$$0 = g(x, \mu(x)) + \nabla J_{\mu}(x)' f(x, \mu(x)), \quad \forall x$$

Policy improvement: Find

$$\overline{\mu}(x) \in \arg\min_{u} \{g(x,u) + \nabla J_{\mu}(x)' f(x,u)\}, \quad \forall x$$

• Note: Need to learn  $\nabla J_{\mu}(x)$  NOT  $J_{\mu}(x)$ 

# A MORE GENERAL/ABSTRACT VIEW OF DP

- Let Y be a real vector space with a norm  $\|\cdot\|$
- A function  $F: Y \mapsto Y$  is said to be a contraction mapping if for some  $\rho \in (0,1)$ , we have

$$||Fy - Fz|| \le \rho ||y - z||,$$
 for all  $y, z \in Y$ .

 $\rho$  is called the modulus of contraction of F.

- Important example: Let X be a set (e.g., state space in DP),  $v: X \mapsto \Re$  be a positive-valued function. Let B(X) be the set of all functions  $J: X \mapsto \Re$  such that J(x)/v(x) is bounded over x.
- We define a norm on B(X), called the weighted sup-norm, by

$$||J|| = \max_{x \in X} \frac{|J(x)|}{v(x)}.$$

• Important special case: The discounted problem mappings T and  $T_{\mu}$  [for  $v(x) \equiv 1, \rho = \alpha$ ].

### CONTRACTION MAPPINGS: AN EXAMPLE

- Consider extension from finite to countable state space,  $X = \{1, 2, ...\}$ , and a weighted sup norm with respect to which the one stage costs are bounded
- Suppose that  $T_{\mu}$  has the form

$$(T_{\mu}J)(i) = b_i + \alpha \sum_{j \in X} a_{ij} J(j), \qquad \forall i = 1, 2, \dots$$

where  $b_i$  and  $a_{ij}$  are some scalars. Then  $T_{\mu}$  is a contraction with modulus  $\rho$  if and only if

$$\frac{\sum_{j \in X} |a_{ij}| \, v(j)}{v(i)} \le \rho, \qquad \forall \ i = 1, 2, \dots$$

• Consider T,

$$(TJ)(i) = \min_{\mu} (T_{\mu}J)(i), \quad \forall i = 1, 2, \dots$$

where for each  $\mu \in M$ ,  $T_{\mu}$  is a contraction mapping with modulus  $\rho$ . Then T is a contraction mapping with modulus  $\rho$ 

• Allows extensions of main DP results from bounded one-stage cost to unbounded one-stage cost.

## CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: If  $F: B(X) \mapsto B(X)$  is a contraction with modulus  $\rho \in (0,1)$ , then there exists a unique  $J^* \in B(X)$  such that

$$J^* = FJ^*$$
.

Furthermore, if J is any function in B(X), then  $\{F^kJ\}$  converges to  $J^*$  and we have

$$||F^k J - J^*|| \le \rho^k ||J - J^*||, \qquad k = 1, 2, \dots$$

- This is a special case of a general result for contraction mappings  $F: Y \mapsto Y$  over normed vector spaces Y that are complete: every sequence  $\{y_k\}$  that is Cauchy (satisfies  $||y_m y_n|| \to 0$  as  $m, n \to \infty$ ) converges.
- The space B(X) is complete (see the text for a proof).

## ABSTRACT FORMS OF DP

- We consider an abstract form of DP based on monotonicity and contraction
- Abstract Mapping: Denote R(X): set of real-valued functions  $J: X \mapsto \Re$ , and let  $H: X \times U \times R(X) \mapsto \Re$  be a given mapping. We consider the mapping

$$(TJ)(x) = \min_{u \in U(x)} H(x, u, J), \qquad \forall \ x \in X.$$

- We assume that  $(TJ)(x) > -\infty$  for all  $x \in X$ , so T maps R(X) into R(X).
- Abstract Policies: Let  $\mathcal{M}$  be the set of "policies", i.e., functions  $\mu$  such that  $\mu(x) \in U(x)$  for all  $x \in X$ .
- For each  $\mu \in \mathcal{M}$ , we consider the mapping  $T_{\mu}: R(X) \mapsto R(X)$  defined by

$$(T_{\mu}J)(x) = H(x, \mu(x), J), \quad \forall x \in X.$$

• Find a function  $J^* \in R(X)$  such that

$$J^*(x) = \min_{u \in U(x)} H(x, u, J^*), \qquad \forall \ x \in X$$

#### EXAMPLES

Discounted problems

$$H(x, u, J) = E\{g(x, u, w) + \alpha J(f(x, u, w))\}$$

• Discounted "discrete-state continuous-time" Semi-Markov Problems (e.g., queueing)

$$H(x, u, J) = G(x, u) + \sum_{y=1}^{n} m_{xy}(u)J(y)$$

where  $m_{xy}$  are "discounted" transition probabilities, defined by the distribution of transition times

• Minimax Problems/Games

$$H(x, u, J) = \max_{w \in W(x, u)} \left[ g(x, u, w) + \alpha J \left( f(x, u, w) \right) \right]$$

• Shortest Path Problems

$$H(x, u, J) = \begin{cases} a_{xu} + J(u) & \text{if } u \neq d, \\ a_{xd} & \text{if } u = d \end{cases}$$

where d is the destination. There are stochastic and minimax versions of this problem

### ASSUMPTIONS

• Monotonicity: If  $J, J' \in R(X)$  and  $J \leq J'$ ,

$$H(x, u, J) \le H(x, u, J'), \qquad \forall \ x \in X, \ u \in U(x)$$

• We can show all the standard analytical and computational results of discounted DP if monotonicity and the following assumption holds:

#### Contraction:

- For every  $J \in B(X)$ , the functions  $T_{\mu}J$  and TJ belong to B(X)
- For some  $\alpha \in (0,1)$ , and all  $\mu$  and  $J, J' \in B(X)$ , we have

$$||T_{\mu}J - T_{\mu}J'|| \le \alpha ||J - J'||$$

- With just monotonicity assumption (as in undiscounted problems) we can still show various forms of the basic results under appropriate conditions
- A weaker substitute for contraction assumption is semicontractiveness: (roughly) for some  $\mu$ ,  $T_{\mu}$  is a contraction and for others it is not; also the "noncontractive"  $\mu$  are not optimal

#### RESULTS USING CONTRACTION

• Proposition 1: The mappings  $T_{\mu}$  and T are weighted sup-norm contraction mappings with modulus  $\alpha$  over B(X), and have unique fixed points in B(X), denoted  $J_{\mu}$  and  $J^*$ , respectively (cf. Bellman's equation).

Proof: From the contraction property of H.

• Proposition 2: For any  $J \in B(X)$  and  $\mu \in \mathcal{M}$ ,

$$\lim_{k \to \infty} T_{\mu}^{k} J = J_{\mu}, \qquad \lim_{k \to \infty} T^{k} J = J^{*}$$

(cf. convergence of value iteration).

Proof: From the contraction property of  $T_{\mu}$  and T.

• Proposition 3: We have  $T_{\mu}J^* = TJ^*$  if and only if  $J_{\mu} = J^*$  (cf. optimality condition).

Proof:  $T_{\mu}J^* = TJ^*$ , then  $T_{\mu}J^* = J^*$ , implying  $J^* = J_{\mu}$ . Conversely, if  $J_{\mu} = J^*$ , then  $T_{\mu}J^* = T_{\mu}J_{\mu} = J_{\mu} = J^* = TJ^*$ .

### RESULTS USING MON. AND CONTRACTION

• Optimality of fixed point:

$$J^*(x) = \min_{\mu \in \mathcal{M}} J_{\mu}(x), \qquad \forall \ x \in X$$

• Existence of a nearly optimal policy: For every  $\epsilon > 0$ , there exists  $\mu_{\epsilon} \in \mathcal{M}$  such that

$$J^*(x) \le J_{\mu_{\epsilon}}(x) \le J^*(x) + \epsilon, \quad \forall \ x \in X$$

• Nonstationary policies: Consider the set  $\Pi$  of all sequences  $\pi = \{\mu_0, \mu_1, \ldots\}$  with  $\mu_k \in \mathcal{M}$  for all k, and define

$$J_{\pi}(x) = \liminf_{k \to \infty} (T_{\mu_0} T_{\mu_1} \cdots T_{\mu_k} J)(x), \qquad \forall \ x \in X,$$

with J being any function (the choice of J does not matter)

• We have

$$J^*(x) = \min_{\pi \in \Pi} J_{\pi}(x), \qquad \forall \ x \in X$$

## THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

$$J^*(x) = \lim_{k \to \infty} (T^k J)(x), \qquad \forall \ x$$

- Policy iteration: Given  $\mu^k$ 
  - Policy evaluation: Find  $J_{\mu^k}$  by solving

$$J_{\mu^k} = T_{\mu^k} J_{\mu^k}$$

- Policy improvement: Find  $\mu^{k+1}$  such that

$$T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$$

- Optimistic PI: This is PI, where policy evaluation is carried out by a finite number of VI
  - Shorthand definition: For some integers  $m_k$

$$T_{\mu^k} J_k = T J_k, \qquad J_{k+1} = T_{\mu^k}^{m_k} J_k, \qquad k = 0, 1, \dots$$

- If  $m_k \equiv 1$  it becomes VI
- If  $m_k = \infty$  it becomes PI
- For intermediate values of  $m_k$ , it is generally more efficient than either VI or PI

## ASYNCHRONOUS ALGORITHMS

- Motivation for asynchronous algorithms
  - Faster convergence
  - Parallel and distributed computation
  - Simulation-based implementations
- General framework: Partition X into disjoint nonempty subsets  $X_1, \ldots, X_m$ , and use separate processor  $\ell$  updating J(x) for  $x \in X_{\ell}$
- Let J be partitioned as

$$J=(J_1,\ldots,J_m),$$

where  $J_{\ell}$  is the restriction of J on the set  $X_{\ell}$ .

• Synchronous VI algorithm:

$$J_{\ell}^{t+1}(x) = T(J_1^t, \dots, J_m^t)(x), \quad x \in X_{\ell}, \ \ell = 1, \dots, m$$

• Asynchronous VI algorithm: For some subsets of times  $\mathcal{R}_{\ell}$ ,

$$J_{\ell}^{t+1}(x) = \begin{cases} T(J_1^{\tau_{\ell 1}(t)}, \dots, J_m^{\tau_{\ell m}(t)})(x) & \text{if } t \in \mathcal{R}_{\ell}, \\ J_{\ell}^{t}(x) & \text{if } t \notin \mathcal{R}_{\ell} \end{cases}$$

where  $t - \tau_{\ell j}(t)$  are communication "delays"

### ONE-STATE-AT-A-TIME ITERATIONS

- Important special case: Assume n "states", a separate processor for each state, and no delays
- Generate a sequence of states  $\{x^0, x^1, \ldots\}$ , generated in some way, possibly by simulation (each state is generated infinitely often)
- Asynchronous VI:

$$J_{\ell}^{t+1} = \begin{cases} T(J_1^t, \dots, J_n^t)(\ell) & \text{if } \ell = x^t, \\ J_{\ell}^t & \text{if } \ell \neq x^t, \end{cases}$$

where  $T(J_1^t, \ldots, J_n^t)(\ell)$  denotes the  $\ell$ -th component of the vector

$$T(J_1^t, \dots, J_n^t) = TJ^t,$$

• The special case where

$$\{x^0, x^1, \ldots\} = \{1, \ldots, n, 1, \ldots, n, 1, \ldots\}$$

is the Gauss-Seidel method

## ASYNCHRONOUS CONV. THEOREM I

- KEY FACT: VI and also PI (with some modifications) still work when implemented asynchronously
- Assume that for all  $\ell, j = 1, ..., m, \mathcal{R}_{\ell}$  is infinite and  $\lim_{t\to\infty} \tau_{\ell j}(t) = \infty$
- Proposition: Let T have a unique fixed point  $J^*$ , and assume that there is a sequence of nonempty subsets  $S(k) \subset R(X)$  with  $S(k+1) \subset S(k)$  for all k, and with the following properties:
  - (1) Synchronous Convergence Condition: Every sequence  $\{J^k\}$  with  $J^k \in S(k)$  for each k, converges pointwise to  $J^*$ . Moreover,

$$TJ \in S(k+1), \quad \forall J \in S(k), k = 0, 1, \dots$$

(2) Box Condition: For all k, S(k) is a Cartesian product of the form

$$S(k) = S_1(k) \times \cdots \times S_m(k),$$

where  $S_{\ell}(k)$  is a set of real-valued functions on  $X_{\ell}$ ,  $\ell = 1, \ldots, m$ .

Then for every  $J \in S(0)$ , the sequence  $\{J^t\}$  generated by the asynchronous algorithm converges pointwise to  $J^*$ .

## ASYNCHRONOUS CONV. THEOREM II

• Interpretation of assumptions:



A synchronous iteration from any J in S(k) moves into S(k+1) (component-by-component)

• Convergence mechanism:



Key: "Independent" component-wise improvement. An asynchronous component iteration from any J in S(k) moves into the corresponding component portion of S(k+1)

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.