APPROXIMATE DYNAMIC PROGRAMMING
LECTURE 2

LECTURE OUTLINE

e Review of discounted problem theory

e Review of shorthand notation

e Algorithms for discounted DP

e Value iteration

e Various forms of policy iteration

e Optimistic policy iteration

e ()-factors and QQ-learning

e Other DP models - Continuous space and time
e A more abstract view of DP

e Asynchronous algorithms

DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system with arbitrary state space

Lk+1 :f(:ck,uk,wk), k:(),l,...

e Cost of a policy m = {uo, 1, ...}

Jx(xo) = lim F {Z@kg(xkaﬂk(xk)awk)}

N —o0 W
k=0,1,... k=0

with a < 1, and for some M, we have |g(z, u, w)| <
M for all (z,u,w)

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min E{g(a:,u,w)+aJ(f(x,u,w))},‘v’x

uweU(x) w

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J.

e For any stationary policy

(T,)(@) = B {g(w,n(@),w) + ad (f (@, u(@),w) } Vo

2

“SHORTHAND” THEORY - A SUMMARY

e DBellman’s equation: J* =TJ*, J, =1,,J, or

J*(x) = min E{g(az,u,w)+aJ*(f(:c,u,w))},V:U

wel (z) w
Ju(x) = g {g(z, p(z),w) + adu(f(z,p(z),w))}, Ve
e Optimality condition:
p: optimal <==> T, ,J*=TJ*

le.,
u(z) € arguén(]i&)g {g9(z,u,w) + aJ*(f(z,u,w))}, Va
e Value iteration: For any (bounded) J

J*(x) = leII()lo(TkJ)(m), Vo

e Policy iteration: Given u*,
— Find J & from J,x = T,xJ,» (policy evalua-
tion); then
— Find p*+! such that T} x+1J,» = TJ,» (pol-
icy improvement)

3

MAJOR PROPERTIES

e NMonotonicity property: For any functions J and
J’ on the state space X such that J(x) < J/(x)
for all x € X, and any p

(TJ)(x) < (TJ)(x), (Tu)(x) < (TpJ')(z), Vo eX

e (ontraction property: For any bounded func-
tions J and J’, and any pu,

mgx’(TJ)(a:) — (TJ)(z)| < &mBX’J(a:) — J'(z)],
mgx‘(TuJ)(x)—(TMJ’)(x)‘ < ozman’J(a:)—J’(x)‘
e Compact Contraction Notation:

=TT < a|J=T, [TuJ-TuJ'| < afJ=J],

where for any bounded function J, we denote by
|.J|| the sup-norm

7] = max]7(2)]

4

THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any (bounded) J

J*(x) = lim (TkJ)(x), vV x

k— 00

e Policy iteration: Given u*
— Policy evaluation: Find J,» by solving

k() = g{g(a},uk(x),w) +ad (f(x,uk(a:),w))}, Vx

or Jluk — Tukjluk
— Policy improvement: Let puf+1 be such that

k+1 :
u () € arguénl}&)g{g(x,u,w)—FaJMk (f(a;,u,w))}, vV

or Tluk+1 J'uk: m— TJ,uk’

e For the case of n states, policy evaluation is
equivalent to solving an n X n linear system of
equations: J, = g, + abP,J,

e For large n, exact Pl is out of the question (even
though it terminates finitely as we will show)

5

JUSTIFICATION OF POLICY ITERATION

e We can show that J,x > J, k1 for all k

e Proof: For given k, we have

Jluk = TMkJMk: > TJ'LLk: = Tluk+1<]’uk:

Using the monotonicity property of DP,

Sy 2 Tyern e > T2 Jye > -0 > Hm T T

N—c0
e Since
A}gnoo T]\,ZHJ k= Jykt
we have Jx > J k1.
e If J,» = J,r1, all above inequalities hold

as equations, so J,r solves Bellman’s equation.
Hence J » = J*

e Thus at iteration k£ either the algorithm gen-
erates a strictly improved policy or it finds an op-
timal policy
— For a finite spaces MDP, the algorithm ter-
minates with an optimal policy

— For infinite spaces MDP, convergence (in an
infinite number of iterations) can be shown

6

OPTIMISTIC POLICY ITERATION

e Optimistic PI: This is PI, where policy evalu-
ation is done approximately, with a finite number
of VI

e So we approximate the policy evaluation
J, =TT

for some number m € [1,00) and initial J

e Shorthand definition: For some integers my

Tpdy =TJx, Jepr =Tk, k=0,1,...

o If mp =1 it becomes VI
o If mir = oo it becomes PI

e (Converges for both finite and infinite spaces
discounted problems (in an infinite number of it-
erations)

e Typically works faster than VI and PI (for
large problems)

APPROXIMATE PI

e Suppose that the policy evaluation is approxi-
mate,

[Tk — Ju|| <0, k=0,1,...
and policy improvement is approximate,
HTMIH—le _TJkH < €,]C:O,l,...

where 0 and € are some positive scalars.

e Frror Bound I: The sequence {u*} generated
by approximate policy iteration satisfies

€ + 20
limsup ||[J,« — J*|| <
msup s — 7] < 2

e 'T'ypical practical behavior: The method makes
steady progress up to a point and then the iterates

J,x oscillate within a neighborhood of J*.

e Frror Bound II: If in addition the sequence {u*}
“terminates” at [(i.e., keeps generating 1)

e + 20
1l — «

| = J*[| <

Q-FACTORS T

e Optimal Q-factor of (z,u):
Q*(z,u) = E{g(z,u,w) + aJ*(T)}
with T = f(x,u,w). It is the cost of starting at z,

applying u is the 1st stage, and an optimal policy
after the 1st stage

e We can write Bellman’s equation as

J* — . * Y Y \v/ Y
() = min Q(x,u) x

e We can equivalently write the VI method as

Jit1(x) = ug’lUla) Qrt1(x,u), Vo,

where (Qr11 is generated by

velU(x)

Qi) = E{ o uw) +a min Qu(z.o) |

with T = f(x, u, w)

Q-FACTORS 11

e ()-factors are costs in an “augmented” problem
where states are (x,u)

e They satisty a Bellman equation Q* = F(Q*
where

vel (T)

(FQ)(z,u) = F {g(x, ww)+a min Q(F, v)}

where T = f(x,u,w)

e VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs

e They require equal amount of computation ...
they just need more storage

e Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

pr(x) = uér;]l&)@ (2, u)

e Once Q*(x,u) are known, the model |g and
FEA{-}] is not needed. Model-free operation

e (Q-Learning (to be discussed later) is a sampling
method that calculates Q*(x,) using a simulator
of the system (no model needed)

10

OTHER DP MODELS

e We have looked so far at the (discrete or con-
tinuous spaces) discounted models for which the
analysis is simplest and results are most powerful

e Other DP models include:

— Undiscounted problems (a = 1): They may
include a special termination state (stochas-
tic shortest path problems)

— Continuous-time finite-state MDP: The time
between transitions is random and state-and-
control-dependent (typical in queueing sys-
tems, called Semi-Markov MDP). These can
be viewed as discounted problems with state-
and-control-dependent discount factors

e Continuous-time, continuous-space models: Clas-
sical automatic control, process control, robotics
— Substantial differences from discrete-time

— Mathematically more complex theory (par-
ticularly for stochastic problems)

— Deterministic versions can be analyzed using
classical optimal control theory

— Admit treatment by DP, based on time dis-
cretization N

CONTINUOUS-TIME MODELS

e System equation: dx(t)/dt = f(z(t),u(t))

o Cost function: [~ g(z(t),u(t))

e Optimal cost starting from z: J*(x)

e 0-Discretization of time: xg11 = x+9-f(xk, ug)

e Bellman equation for the 0-discretized problem:
Ji(x) = mgn {6-g(z,u) +Jf(z+6- f(z,u))}

e Take 0 — 0, to obtain the Hamilton-Jacobi-
Bellman equation [assuming lims_,¢ J§ () = J*(z)]

O:mgn{g(a;,u)+VJ*(x)’f(:1;,u)}, Vx

e Policy Iteration (informally):

— Policy evaluation: Given current pu, solve

0=g(z,pu(x) +Vdu(z) f(z, u(z)), V&
— Policy improvement: Find
fi(z) € argmin {g(z,u)+V () f(z,u)}, YV
e Note: Need to learn VJ,(x) NOT J,(z)

12

A MORE GENERAL/ABSTRACT VIEW OF DP

e Let Y be a real vector space with a norm || - ||

e A function F':Y — Y is said to be a contrac-
tion mapping if for some p € (0, 1), we have

|Fy — Fz|| <plly—z|, forallyzeY

p is called the modulus of contraction of F'.

e Important example: Let X be a set (e.g., state
space in DP), v : X +— R be a positive-valued
function. Let B(X) be the set of all functions

J : X — R such that J(x)/v(x) is bounded over
T

e We define a norm on B(X), called the weighted
sup-norm, by

@)
171} = max =5

e Important special case: The discounted prob-
lem mappings 7" and T, [for v(z) =1, p = a].

13

CONTRACTION MAPPINGS: AN EXAMPLE

e Consider extension from finite to countable state
space, X = {1,2,...}, and a weighted sup norm
with respect to which the one stage costs are bounded

e Suppose that T}, has the form
(TpJ)(@) =bi+a Y ai; J(), Vi=12...
jeX

where b; and a;; are some scalars. Then 7}, is a
contraction with modulus p if and only if

D iex laij|v(j)
v(%)
e Consider T,

<p, Vi=12,...

(TJ)(0) = min(T,J)(@), Yi=1,2,...

where for each p € M, T}, is a contraction map-
ping with modulus p. Then T is a contraction
mapping with modulus p

e Allows extensions of main DP results from
bounded one-stage cost to unbounded one-stage
cost. 14

CONTRACTION MAPPING FIXED-POINT TH.

e (Contraction Mapping Fixed-Point Theorem: If
F : B(X) — B(X) is a contraction with modulus
p € (0,1), then there exists a unique J* € B(X)
such that

J* = FJ*.

Furthermore, if J is any function in B(X), then
{FkJ} converges to J* and we have

e This is a special case of a general result for
contraction mappings F' : Y — Y over normed
vector spaces Y that are complete: every sequence
{yr} that is Cauchy (satisfies ||ym — yn| — 0 as
m,n — 00) converges.

e The space B(X) is complete (see the text for a
proof).

15

ABSTRACT FORMS OF DP

e We consider an abstract form of DP based on
monotonicity and contraction

e Abstract Mapping: Denote R(X): set of real-
valued functions J : X — R, and let H : X x U X

R(X) — R be a given mapping. We consider the
mapping

(TJ)(x) = min H(x,u,J), VzelX.
uelU (x)

e We assume that (T'J)(z) > —oo for all x € X,
so T maps R(X) into R(X).

e Abstract Policies: Let M be the set of “poli-

cies”, i.e., functions p such that u(x) € U(x) for
all z € X.

e For each u € M, we consider the mapping
T, : R(X) — R(X) defined by

(T J)(x) = H(z, p(z),J), VrelX.
e Find a function J* € R(X) such that

J*(x) = min H(z,u,J*), VeeX
uel (x)

16

EXAMPLES

e Discounted problems
H(CC,”LL, J) — E{g(az,u,w) + OéJ(f(ZU,U, w))}

e Discounted “discrete-state continuous-time”
Semi-Markov Problems (e.g., queueing)

H(z,u,J)=G(x,u —|—me

where mg, are “discounted” tran81t10n probabili-
ties, defined by the distribution of transition times

e Minimax Problems/Games

H(CE, w J) - wé%%fcc u) [g(:z:, u, w)+aJ(f(£E, U, w))]

e Shortest Path Problems

Gru + J(u) if u # d,
H(m,u,J):{ad (u) ifuid

where d i1s the destination. There are stochastic
and minimax versions of this problem

17

ASSUMPTIONS

e Monotonicity: If J, J’ € R(X) and J < J',
H(x,u,J) < H(z,u,J), Vee X, ueU(x)

e We can show all the standard analytical and
computational results of discounted DP if mono-
tonicity and the following assumption holds:

e (Contraction:

— For every J € B(X), the functions 7),J and
TJ belong to B(X

— For some a € (0,1), and all 4 and J,J’ €
B(X), we have

1Tud =T J'|| < aflJ =T

e With just monotonicity assumption (as in undis-
counted problems) we can still show various forms
of the basic results under appropriate conditions

e A weaker substitute for contraction assumption
is semicontractiveness: (roughly) for some u, T},
is a contraction and for others it is not; also the
“noncontractive” p are not optimal

18

RESULTS USING CONTRACTION

e Proposition 1: The mappings 7, and 1" are
weighted sup-norm contraction mappings with mod-
ulus a over B(X), and have unique fixed points
in B(X), denoted J,, and J*, respectively (cf.
Bellman’s equation).

Proof: From the contraction property of H.

e Proposition 2: For any J € B(X) and u € M,

lim ThJ =J,, lim TkJ = J*

k— o0 k— o0
(cf. convergence of value iteration).

Proof: From the contraction property of 7, and
T.

e Proposition 3: We have T}, J* = T'J* if and
only if J, = J* (cf. optimality condition).

Proof: T, J* = TJ*, then T, J* = J*, implying
J* = J,. Conversely, it J, = J*, then T, J* =

19

RESULTS USING MON. AND CONTRACTION

e Optimality of fixed point:

J*(a:)z;gij\r}lJu(x), VeelX

e [Existence of a nearly optimal policy: For every
e > 0, there exists yu. € M such that

J(x) < J,. (x) < J*(z) + €, VeelX

e Nonstationary policies: Consider the set II of
all sequences m = {uo, p1, ...} with up € M for
all k£, and define

Jr (@) = Uminf (Ty Ty, - - - Ty, J) (@), VrelX,

k— 00

with J being any function (the choice of J does
not matter)

e We have

J*(a:)zglélqulJﬂ(x), VeelX

20

THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any (bounded) J

J*(x) = lim (TkJ)(x), Vx
k— oo
e Policy iteration: Given u*
— Policy evaluation: Find J,,» by solving

Jp=T

M MkJMk

— Policy improvement: Find p*+1 such that
Trrrd e =TT

e Optimistic PI: This is PI, where policy evalu-
ation is carried out by a finite number of VI

— Shorthand definition: For some integers my

TMka =T J, Jr+1 :Tﬁka, k=20,1,...

— If mp =1 it becomes VI
— If my = oo it becomes PI

— For intermediate values of my, it is generally
more efficient than either VI or PI

21

ASYNCHRONOUS ALGORITHMS

e Motivation for asynchronous algorithms
— Faster convergence
— Parallel and distributed computation

— Simulation-based implementations

e (General framework: Partition X into disjoint
nonempty subsets Xi,...,X,,, and use separate
processor ¢ updating J(x) for x € X,

e Let J be partitioned as

J=(J1, ..., JIm),
where Jy is the restriction of J on the set X,.

e Synchronous VI algorithm:
J N 2) =T, ..., Jh)(2), v€Xp, £=1,....,m

e Asynchronous VI algorithm: For some subsets
of times Ry,

T () = T grm Wy) ift e Ry,
¢ Jt(x) if t & Ry

where t — 74;(t) are communication “delays”

22

ONE-STATE-AT-A-TIME ITERATIONS

e Important special case: Assume n “states”, a
separate processor for each state, and no delays

e Generate a sequence of states {x0,x1,...}, gen-
erated in some way, possibly by simulation (each
state is generated infinitely often)

e Asynchronous VI:

[T IO =t
¢ J; if ¢ # at,

where T'(J},...,J}%)(£) denotes the ¢-th compo-
nent of the vector

T(Jt,...,J5) =TJt,

e The special case where
{0 21 ...} ={1,...,n,1,...,n,1,...}

is the Gauss-Seidel method

23

ASYNCHRONOUS CONV. THEOREM 1

e KEY FACT: VI and also PI (with some modifi-
cations) still work when implemented asynchronously

e Assume that forall4,j =1,...,m, Ry is infinite
and lim;—, o 7¢; () = 00

e Proposition: Let T" have a unique fixed point J*,
and assume that there is a sequence of nonempty

subsets S(k) C R(X) with S(k+1) C S(k) for
all £, and with the following properties:
(1) Synchronous Convergence Condition: Every
sequence {J*} with J* € S(k) for each k,
converges pointwise to J*. Moreover,

TJ e S(k+1), VJeSk),k=0,1,....

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = 51(k) x -+ x Sp(k),

where Sy(k) is a set of real-valued functions
on Xp, {=1,...,m.

Then for every J € S(0), the sequence {J*} gen-
erated by the asynchronous algorithm converges
pointwise to J*. 9

ASYNCHRONOUS CONV. THEOREM 11

e Interpretation of assumptions:

J = (J1,J2)

52(0) S(k+1) eJ TJ:;T ;

S1(0)

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

e (Convergence mechanism:

J1 Iterations
AN

\\ J = (Ji1, o)
Sk+1) eJ* Y |
S(k)
S(0)
Jo Iteration
Key: “Independent” component-wise improve-

ment. An asynchronous component iteration from
any J in S(k) moves into the corresponding com-
ponent portion of S(k + 1)

25

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

