
APPROXIMATE DYNAMIC PROGRAMMING
 

LECTURE 2
 

LECTURE OUTLINE
 

• Review of discounted problem theory 

• Review of shorthand notation 

• Algorithms for discounted DP 

• Value iteration 

• Various forms of policy iteration 

• Optimistic policy iteration 

• Q-factors and Q-learning 

• Other DP models - Continuous space and time
 

• A more abstract view of DP 

• Asynchronous algorithms 
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DISCOUNTED PROBLEMS/BOUNDED COST
 

• Stationary system with arbitrary state space 

xk+1 = f(xk, uk, wk), k = 0, 1, . . . 

• Cost of a policy π = {µ0, µ1, . . .} 

  

N−1
 

  

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk 

k=0,1,... k=0 

with α < 1, and for someM , we have |g(x, u, w)| ≤
 
M for all (x, u, w) 

• Shorthand notation for DP mappings (operate
 
on functions of state to produce other functions)
 

    

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x 
u∈U(x) w

TJ is the optimal cost function for the one-stage 
problem with stage cost g and terminal cost αJ . 

• For any stationary policy µ 

      

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x 
w
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“SHORTHAND” THEORY – A SUMMARY
 

• Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ or 

J∗(x) = min E g(x, u, w) + αJ∗ f(x, u, w) , ∀ x 
u∈U(x) w 

Jµ(x) =	 E g x, µ(x), w + αJµ f(x, µ(x), w) , ∀ x 
w 

• Optimality condition: 

µ: optimal <==> TµJ∗ = TJ∗ 

i.e., 

µ(x) ∈ arg min E g(x, u, w) + αJ∗ f(x, u, w) , ∀ x 
u∈U(x) w 

•	 Value iteration: For any (bounded) J 

J∗(x) = lim (T kJ)(x), ∀ x 
k→∞ 

•	 Policy iteration: Given µk, 

− Find J k from J k = T kJ (policy evalua­kµ	 µ µ µ

tion); then
 

− Find µk+1 such that T k+1 J k = TJ k (pol­µ µ µ

icy improvement) 3
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MAJOR PROPERTIES
 

• Monotonicity property: For any functions J and 
′J on the state space X such that J(x) ≤ J ′(x) 

for all x ∈ X, and any µ 

(TJ)(x) ≤ (TJ ′)(x), (TµJ)(x) ≤ (TµJ ′)(x), ∀ x ∈ X 

• Contraction property: For any bounded func­
tions J and J ′, and any µ, 

    


max  (TJ)(x)− (TJ ′)(x) ≤ αmax  J(x)− J ′(x) , 
x x

    


 max  (TµJ)(x)− (TµJ ′)(x) ≤ αmax  J(x)−J ′(x)
x x

• Compact Contraction Notation:
 

ITJ−TJ ′I ≤ αIJ−J ′I, ITµJ−TµJ ′I ≤ αIJ−J ′I,
 

where for any bounded function J , we denote by
 
IJI the sup-norm
 

  

 IJI = max  J(x)

x
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THE TWO MAIN ALGORITHMS: VI AND PI
 

• Value iteration: For any (bounded) J 

J∗(x) = lim (T kJ)(x), ∀ x 
k→∞ 

•	 Policy iteration: Given µk 

− Policy evaluation: Find J by solving kµ

J	 k (x) = E g x, µ 
k(x), w + αJ k f(x, µ 

k(x), w) , ∀ xµ	 µ
w 

or	 J = T kJ kkµ µ µ

− Policy improvement: Let µk+1 be such that 

µ 
k+1(x) ∈ arg min E g(x, u, w) + αJ k f(x, u, w) , ∀ xµ

u∈U(x) w 

or	 T k+1 J = TJ kkµ µ µ

• For the case of n states, policy evaluation is 
equivalent to solving an n × n linear system of 
equations: Jµ = gµ + αPµJµ 

• For large n, exact PI is out of the question (even 
though it terminates finitely as we will show) 
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JUSTIFICATION OF POLICY ITERATION
 

• We can show that J k ≥ J k+1 for all kµ µ

• Proof: For given k, we have 

J = T kJ k ≥ TJ k = T k+1 Jk kµ µ µ µ µ µ

Using the monotonicity property of DP, 

J k ≥ T k+1 J k ≥ T 2 J k ≥ · · · ≥ lim TN J kµ µ µ k+1 µ k+1 µµ µN→∞ 

• Since 
lim T

µ
N 
k+1 Jµk = Jµk+1 

N→∞ 

we have J k ≥ J k+1 .µ µ

• If J = J k+1 , all above inequalities hold kµ µ

as equations, so J solves Bellman’s equation.
 kµ

Hence Jµk = J∗ 

• Thus at iteration k either the algorithm gen­
erates a strictly improved policy or it finds an op­
timal policy 

− For a finite spaces MDP, the algorithm ter­
minates with an optimal policy 

− For infinite spaces MDP, convergence (in an 
infinite number of iterations) can be shown 
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OPTIMISTIC POLICY ITERATION
 

• Optimistic PI: This is PI, where policy evalu­
ation is done approximately, with a finite number 
of VI 

• So we approximate the policy evaluation 

mJµ ≈ Tµ J 

for some number m ∈ [1,∞) and initial J 

• Shorthand definition: For some integers mk 

mkTµkJk = TJk, Jk+1 = T k Jk, k = 0, 1, . . . 
µ

• If mk ≡ 1 it becomes VI 

• If mk = ∞ it becomes PI 

• Converges for both finite and infinite spaces 
discounted problems (in an infinite number of it­
erations) 

• Typically works faster than VI and PI (for 
large problems) 
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APPROXIMATE PI
 

• Suppose that the policy evaluation is approxi­
mate, 

IJk − JµkI ≤ δ, k = 0, 1, . . . 

and policy improvement is approximate, 

ITµk+1 Jk − TJkI ≤ ǫ, k = 0, 1, . . . 

where δ and ǫ are some positive scalars. 

• Error Bound I: The sequence {µk} generated 
by approximate policy iteration satisfies 

ǫ+ 2αδ 
lim sup IJ k − J∗I ≤ µ
k→∞ (1− α)2 

• Typical practical behavior: The method makes 
steady progress up to a point and then the iterates 
Jµk oscillate within a neighborhood of J∗ . 

• Error Bound II: If in addition the sequence {µk} 
“terminates” at µ (i.e., keeps generating µ) 

ǫ+ 2αδ 
IJµ − J∗I ≤ 

1− α 
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Q-FACTORS I
 

• Optimal Q-factor of (x, u):
 

Q∗(x, u) = E {g(x, u, w) + αJ∗(x)} 

with x = f(x, u, w). It is the cost of starting at x, 
applying u is the 1st stage, and an optimal policy 
after the 1st stage 

• We can write Bellman’s equation as 

J∗(x) = min Q∗(x, u), ∀ x, 
u∈U(x) 

• We can equivalently write the VI method as 

Jk+1(x) = min Qk+1(x, u), ∀ x, 
u∈U(x) 

where Qk+1 is generated by 

Qk+1(x, u) = E g(x, u, w) + α min Qk(x, v) 
v∈U(x) 

with x = f(x, u, w)
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Q-FACTORS II
 

• Q-factors are costs in an “augmented” problem 
where states are (x, u) 

• They satisfy a Bellman equation Q∗ = FQ∗ 

where 

(FQ)(x, u) = E g(x, u, w) + α min Q(x, v)
 
v∈U(x) 

where x = f(x, u, w) 

• VI and PI for Q-factors are mathematically 
equivalent to VI and PI for costs 

• They require equal amount of computation ... 
they just need more storage 

• Having optimal Q-factors is convenient when 
implementing an optimal policy on-line by 

µ ∗(x) = min Q∗(x, u) 
u∈U(x) 

• Once Q∗(x, u) are known, the model [g and 
E{·}] is not needed. Model-free operation 

• Q-Learning (to be discussed later) is a sampling 
method that calculates Q∗(x, u) using a simulator 
of the system (no model needed) 
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OTHER DP MODELS
 

• We have looked so far at the (discrete or con­
tinuous spaces) discounted models for which the
 
analysis is simplest and results are most powerful
 

• Other DP models include: 

− Undiscounted problems (α = 1): They may 
include a special termination state (stochas­
tic shortest path problems) 

− Continuous-time finite-state MDP: The time 
between transitions is random and state-and­
control-dependent (typical in queueing sys­
tems, called Semi-Markov MDP). These can 
be viewed as discounted problems with state­
and-control-dependent discount factors 

• Continuous-time, continuous-space models: Clas­
sical automatic control, process control, robotics 

− Substantial differences from discrete-time 

− Mathematically more complex theory (par­
ticularly for stochastic problems) 

− Deterministic versions can be analyzed using 
classical optimal control theory 

− Admit treatment by DP, based on time dis­
cretization 11



  

  

    

  

    

  

CONTINUOUS-TIME MODELS
 

• System equation: dx(t)/dt = f x(t), u(t) 
 ∞

• Cost function: g x(t), u(t)
0 

• Optimal cost starting from x: J∗(x) 

• δ-Discretization of time: xk+1 = xk+δ·f(xk, uk) 

• Bellman equation for the δ-discretized problem: 

Jδ 
∗(x) = min δ · g(x, u) + Jδ 

∗ x + δ · f(x, u) 
u 

• Take δ → 0, to obtain the Hamilton-Jacobi-
Bellman equation [assuming limδ→0 J∗(x) = J∗(x)] δ 

0 = min g(x, u) +∇J∗(x)′f(x, u) , ∀ x 
u 

• Policy Iteration (informally): 

− Policy evaluation: Given current µ, solve 

0 = g x, µ(x) +∇Jµ(x)′f x, µ(x) , ∀ x 

− Policy improvement: Find 

µ(x) ∈ argmin g(x, u)+∇Jµ(x)′f(x, u) , ∀ x 
u 

• Note: Need to learn ∇Jµ(x) NOT Jµ(x)
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A MORE GENERAL/ABSTRACT VIEW OF DP
 

• Let Y be a real vector space with a norm I · I
 

• A function F : Y  → Y is said to be a contrac­
tion mapping if for some ρ ∈ (0, 1), we have 

IFy − FzI ≤ ρIy − zI, for all y, z ∈ Y.
 

ρ is called the modulus of contraction of F . 

• Important example: Let X be a set (e.g., state
 
space in DP), v : X  → ℜ be a positive-valued
 
function. Let B(X) be the set of all functions
 
J : X  → ℜ such that J(x)/v(x) is bounded over
 
x. 

• We define a norm on B(X), called the weighted
 
sup-norm, by 

|J(x)|
IJI = max .
 

x∈X v(x) 

• Important special case: The discounted prob­
lem mappings T and Tµ [for v(x) ≡ 1, ρ = α]. 
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CONTRACTION MAPPINGS: AN EXAMPLE
 

• Consider extension from finite to countable state 
space, X = {1, 2, . . .}, and a weighted sup norm 
with respect to which the one stage costs are bounded 

• Suppose that Tµ has the form 

(TµJ)(i) = bi + α aij J(j), ∀ i = 1, 2, . . .
 
j∈X
 

where bi and aij are some scalars. Then Tµ is a 
contraction with modulus ρ if and only if 

L

j∈X |aij | v(j) 
≤ ρ, ∀ i = 1, 2, . . . 

v(i) 

• Consider T , 

(TJ)(i) = min (TµJ)(i), ∀ i = 1, 2, . . . 
µ 

where for each µ ∈ M , Tµ is a contraction map­
ping with modulus ρ. Then T is a contraction 
mapping with modulus ρ 

• Allows extensions of main DP results from 
bounded one-stage cost to unbounded one-stage 
cost. 14

∑

j∈X



CONTRACTION MAPPING FIXED-POINT TH.
 

• Contraction Mapping Fixed-Point Theorem: If
 
F : B(X) B(X) is a contraction with modulus 
ρ ∈ (0, 1), then there exists a unique J∗ ∈ B(X) 
such that 

J∗ = FJ∗ . 

Furthermore, if J is any function in B(X), then 
{F kJ} converges to J∗ and we have 

IF kJ − J∗I ≤ ρkIJ − J∗I, k = 1, 2, . . . . 

• This is a special case of a general result for 
contraction mappings F : Y  → Y over normed 
vector spaces Y that are complete: every sequence 
{yk} that is Cauchy (satisfies Iym − ynI → 0 as 
m,n → ∞) converges. 

• The space B(X) is complete (see the text for a 
proof). 
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ABSTRACT FORMS OF DP
 

• We consider an abstract form of DP based on 
monotonicity and contraction 

• Abstract Mapping: Denote R(X): set of real­
valued functions J : X  → ℜ, and let H : X ×U × 
R(X)  → ℜ be a given mapping. We consider the 
mapping 

(TJ)(x) = min H(x, u, J), ∀ x ∈ X.
 
u∈U(x) 

• We assume that (TJ)(x) > −∞ for all x ∈ X, 
so T maps R(X) into R(X). 

• Abstract Policies: Let M be the set of “poli­
cies”, i.e., functions µ such that µ(x) ∈ U(x) for 
all x ∈ X. 

• For each µ ∈ M, we consider the mapping 
Tµ : R(X) R(X) defined by 

(TµJ)(x) = H x, µ(x), J , ∀ x ∈ X. 

• Find a function J∗ ∈ R(X) such that 

J∗(x) = min H(x, u, J∗), ∀ x ∈ X 
u∈U(x) 

16

( )

7→



    

 

  

�

EXAMPLES
 

•	 Discounted problems 

H(x, u, J) = E g(x, u, w) + αJ f(x, u, w) 

• Discounted “discrete-state continuous-time” 
Semi-Markov Problems (e.g., queueing) 

n 

H(x, u, J) = G(x, u) + mxy(u)J(y) 
y=1 

where mxy are “discounted” transition probabili­
ties, defined by the distribution of transition times 

•	 Minimax Problems/Games 

 	  

H(x, u, J) = max g(x, u, w)+αJ f(x, u, w)
w∈W (x,u)

•	 Shortest Path Problems 

axu + J(u) if u  = d,
H(x, u, J) = 

axd	 if u = d 

where d is the destination. There are stochastic 
and minimax versions of this problem 

17
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ASSUMPTIONS
 

′ ′• Monotonicity: If J, J ∈ R(X) and J ≤ J , 

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x) 

• We can show all the standard analytical and 
computational results of discounted DP if mono-
tonicity and the following assumption holds: 

• Contraction: 

− For every J ∈ B(X), the functions TµJ and 
TJ belong to B(X) 

′− For some α ∈ (0, 1), and all µ and J, J ∈ 
B(X), we have 

ITµJ − TµJ ′I ≤ αIJ − J ′I 

• With just monotonicity assumption (as in undis­
counted problems) we can still show various forms
 
of the basic results under appropriate conditions
 

• A weaker substitute for contraction assumption 
is semicontractiveness: (roughly) for some µ, Tµ 

is a contraction and for others it is not; also the 
“noncontractive” µ are not optimal 
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RESULTS USING CONTRACTION
 

• Proposition 1: The mappings Tµ and T are 
weighted sup-norm contraction mappings with mod­
ulus α over B(X), and have unique fixed points 
in B(X), denoted Jµ and J∗, respectively (cf. 
Bellman’s equation). 

Proof: From the contraction property of H. 

• Proposition 2: For any J ∈ B(X) and µ ∈ M,
 

lim Tµ
kJ = Jµ, lim T kJ = J∗ 

k→∞ k→∞ 

(cf. convergence of value iteration). 

Proof: From the contraction property of Tµ and 
T . 

• Proposition 3: We have TµJ∗ = TJ∗ if and 
only if Jµ = J∗ (cf. optimality condition). 

Proof: TµJ∗ = TJ∗, then TµJ∗ = J∗, implying 
J∗ = Jµ. Conversely, if Jµ = J∗, then TµJ∗ = 
TµJµ = Jµ = J∗ = TJ∗ . 
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RESULTS USING MON. AND CONTRACTION
 

• Optimality of fixed point: 

J∗(x) = min Jµ(x), ∀ x ∈ X 
µ∈M 

• Existence of a nearly optimal policy: For every 
ǫ > 0, there exists µǫ ∈ M such that 

J∗(x) ≤ Jµǫ(x) ≤ J∗(x) + ǫ, ∀ x ∈ X 

• Nonstationary policies: Consider the set Π of 
all sequences π = {µ0, µ1, . . .} with µk ∈ M for 
all k, and define 

Jπ(x) = lim inf (Tµ0 Tµ1 · · · TµkJ)(x), ∀ x ∈ X, 
k→∞ 

with J being any function (the choice of J does 
not matter) 

• We have 

J∗(x) = min Jπ(x), ∀ x ∈ X 
π∈Π 
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THE TWO MAIN ALGORITHMS: VI AND PI
 

• Value iteration: For any (bounded) J 

J∗(x) = lim (T kJ)(x), ∀ x 
k→∞ 

•	 Policy iteration: Given µk 

− Policy evaluation: Find J by solving kµ

J = T kJ kkµ µ µ

− Policy improvement: Find µk+1 such that 

T k+1 J k = TJ kµ µ µ

• Optimistic PI: This is PI, where policy evalu­
ation is carried out by a finite number of VI 

− Shorthand definition: For some integers mk 

mkTµkJk = TJk, Jk+1 = T k Jk, k = 0, 1, . . . 
µ

− If mk ≡ 1 it becomes VI
 

− If mk = ∞ it becomes PI
 

− For intermediate values of mk, it is generally
 
more efficient than either VI or PI 
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ASYNCHRONOUS ALGORITHMS
 

• Motivation for asynchronous algorithms 

− Faster convergence 

− Parallel and distributed computation 

− Simulation-based implementations 

• General framework: Partition X into disjoint 
nonempty subsets X1, . . . , Xm, and use separate 
processor ℓ updating J(x) for x ∈ Xℓ 

• Let J be partitioned as 

J = (J1, . . . , Jm), 

where Jℓ is the restriction of J on the set Xℓ. 

• Synchronous VI algorithm: 

J t+1 (x) = 1, . . . , J
t x ∈ Xℓ, ℓ = 1, . . . ,m T (J t
m)(x),ℓ 

• Asynchronous VI algorithm: For some subsets 
of times Rℓ, 

τℓ1(t) τℓm(t) 

J t+1 T (J , . . . , Jm )(x) if t ∈ Rℓ,1(x) = ℓ J t 
ℓ(x) if t /∈ Rℓ 

where t − τℓj(t) are communication “delays”
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ONE-STATE-AT-A-TIME ITERATIONS
 

• Important special case: Assume n “states”, a 
separate processor for each state, and no delays 

• Generate a sequence of states {x0, x1, . . .}, gen­
erated in some way, possibly by simulation (each 
state is generated infinitely often) 

•	 Asynchronous VI: 

J t+1 T (J1
t , . . . , Jnt )(ℓ) if ℓ = xt, 

= ℓ J t	 if ℓ = xt,ℓ 

where T (J1
t , . . . , Jnt )(ℓ) denotes the ℓ-th compo­

nent of the vector 

T (J1
t , . . . , Jnt ) = TJ t, 

• The special case where 

{x0, x1, . . .} = {1, . . . , n, 1, . . . , n, 1, . . .} 

is the Gauss-Seidel method 

23
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ASYNCHRONOUS CONV. THEOREM I 

• KEY FACT: VI and also PI (with some modifi­
cations) still work when implemented asynchronously 

• Assume that for all ℓ, j = 1, . . . ,m, Rℓ is infinite 
and limt→∞ τℓj(t) = ∞ 

• Proposition: Let T have a unique fixed point J∗ , 
and assume that there is a sequence of nonempty 
subsets S(k) ⊂ R(X) with S(k + 1) ⊂ S(k) for 
all k, and with the following properties: 

(1) Synchronous Convergence Condition: Every 
sequence {Jk} with Jk ∈ S(k) for each k, 
converges pointwise to J∗ . Moreover, 

TJ ∈ S(k+1), ∀ J ∈ S(k), k = 0, 1, . . . . 

(2) Box Condition: For all k, S(k) is a Cartesian 
product of the form 

S(k) = S1(k)× · · · × Sm(k), 

where Sℓ(k) is a set of real-valued functions 
on Xℓ, ℓ = 1, . . . ,m. 

Then for every J ∈ S(0), the sequence {J t} gen­
erated by the asynchronous algorithm converges 
pointwise to J∗ . 24
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ASYNCHRONOUS CONV. THEOREM II
 

• Interpretation of assumptions:
 

A synchronous iteration from any J in S(k) moves 
into S(k + 1) (component-by-component) 

• Convergence mechanism: 

S(0) 
S(k) 

S(k + 1) J∗ 

J = (J1, J2) 

J1 Iterations 

J2 Iteration 

Key: “Independent” component-wise improve­
ment. An asynchronous component iteration from 
any J in S(k) moves into the corresponding com­
ponent portion of S(k + 1) 
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