
APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

• Review of discounted problem theory

• Review of shorthand notation

• Algorithms for discounted DP

• Value iteration

• Various forms of policy iteration

• Optimistic policy iteration

• Q-factors and Q-learning

• Other DP models - Continuous space and time

• A more abstract view of DP

• Asynchronous algorithms

1

DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

with α < 1, and for someM , we have |g(x, u, w)| ≤

M for all (x, u, w)

• Shorthand notation for DP mappings (operate

on functions of state to produce other functions)

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x
u∈U(x) w

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x
w

2

“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ or

J∗(x) = min E g(x, u, w) + αJ∗ f(x, u, w) , ∀ x
u∈U(x) w

Jµ(x) =	 E g x, µ(x), w + αJµ f(x, µ(x), w) , ∀ x
w

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(x) ∈ arg min E g(x, u, w) + αJ∗ f(x, u, w) , ∀ x
u∈U(x) w

•	 Value iteration: For any (bounded) J

J∗(x) = lim (T kJ)(x), ∀ x
k→∞

•	 Policy iteration: Given µk,

− Find J k from J k = T kJ (policy evalua­kµ	 µ µ µ

tion); then

− Find µk+1 such that T k+1 J k = TJ k (pol­µ µ µ

icy improvement) 3

{

g(x, u, w) + αJ∗
(

f(x, u, w)
)}

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)}

{

()
(

f(x, u, w)
)}

MAJOR PROPERTIES

• Monotonicity property: For any functions J and
′J on the state space X such that J(x) ≤ J ′(x)

for all x ∈ X, and any µ

(TJ)(x) ≤ (TJ ′)(x), (TµJ)(x) ≤ (TµJ ′)(x), ∀ x ∈ X

• Contraction property: For any bounded func­
tions J and J ′, and any µ,

max (TJ)(x)− (TJ ′)(x) ≤ αmax J(x)− J ′(x) ,
x x

 max (TµJ)(x)− (TµJ ′)(x) ≤ αmax J(x)−J ′(x)
x x

• Compact Contraction Notation:

ITJ−TJ ′I ≤ αIJ−J ′I, ITµJ−TµJ ′I ≤ αIJ−J ′I,

where for any bounded function J , we denote by

IJI the sup-norm

 IJI = max J(x)

x

4

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J∗(x) = lim (T kJ)(x), ∀ x
k→∞

•	 Policy iteration: Given µk

− Policy evaluation: Find J by solving kµ

J	 k (x) = E g x, µ
k(x), w + αJ k f(x, µ

k(x), w) , ∀ xµ	 µ
w

or	 J = T kJ kkµ µ µ

− Policy improvement: Let µk+1 be such that

µ
k+1(x) ∈ arg min E g(x, u, w) + αJ k f(x, u, w) , ∀ xµ

u∈U(x) w

or	 T k+1 J = TJ kkµ µ µ

• For the case of n states, policy evaluation is
equivalent to solving an n × n linear system of
equations: Jµ = gµ + αPµJµ

• For large n, exact PI is out of the question (even
though it terminates finitely as we will show)

5

{

g
(

x, µ
k(x), w

)

+ αJµk

(

f(x, µk(x), w)
)}

{

g(x, u, w) + αJµk

(

f(x, u, w)
)}

JUSTIFICATION OF POLICY ITERATION

• We can show that J k ≥ J k+1 for all kµ µ

• Proof: For given k, we have

J = T kJ k ≥ TJ k = T k+1 Jk kµ µ µ µ µ µ

Using the monotonicity property of DP,

J k ≥ T k+1 J k ≥ T 2 J k ≥ · · · ≥ lim TN J kµ µ µ k+1 µ k+1 µµ µN→∞

• Since
lim T

µ
N
k+1 Jµk = Jµk+1

N→∞

we have J k ≥ J k+1 .µ µ

• If J = J k+1 , all above inequalities hold kµ µ

as equations, so J solves Bellman’s equation.
 kµ

Hence Jµk = J∗

• Thus at iteration k either the algorithm gen­
erates a strictly improved policy or it finds an op­
timal policy

− For a finite spaces MDP, the algorithm ter­
minates with an optimal policy

− For infinite spaces MDP, convergence (in an
infinite number of iterations) can be shown

6

OPTIMISTIC POLICY ITERATION

• Optimistic PI: This is PI, where policy evalu­
ation is done approximately, with a finite number
of VI

• So we approximate the policy evaluation

mJµ ≈ Tµ J

for some number m ∈ [1,∞) and initial J

• Shorthand definition: For some integers mk

mkTµkJk = TJk, Jk+1 = T k Jk, k = 0, 1, . . .
µ

• If mk ≡ 1 it becomes VI

• If mk = ∞ it becomes PI

• Converges for both finite and infinite spaces
discounted problems (in an infinite number of it­
erations)

• Typically works faster than VI and PI (for
large problems)

7

APPROXIMATE PI

• Suppose that the policy evaluation is approxi­
mate,

IJk − JµkI ≤ δ, k = 0, 1, . . .

and policy improvement is approximate,

ITµk+1 Jk − TJkI ≤ ǫ, k = 0, 1, . . .

where δ and ǫ are some positive scalars.

• Error Bound I: The sequence {µk} generated
by approximate policy iteration satisfies

ǫ+ 2αδ
lim sup IJ k − J∗I ≤ µ
k→∞ (1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗ .

• Error Bound II: If in addition the sequence {µk}
“terminates” at µ (i.e., keeps generating µ)

ǫ+ 2αδ
IJµ − J∗I ≤

1− α
8

� �

Q-FACTORS I

• Optimal Q-factor of (x, u):

Q∗(x, u) = E {g(x, u, w) + αJ∗(x)}

with x = f(x, u, w). It is the cost of starting at x,
applying u is the 1st stage, and an optimal policy
after the 1st stage

• We can write Bellman’s equation as

J∗(x) = min Q∗(x, u), ∀ x,
u∈U(x)

• We can equivalently write the VI method as

Jk+1(x) = min Qk+1(x, u), ∀ x,
u∈U(x)

where Qk+1 is generated by

Qk+1(x, u) = E g(x, u, w) + α min Qk(x, v)
v∈U(x)

with x = f(x, u, w)

9

� �

Q-FACTORS II

• Q-factors are costs in an “augmented” problem
where states are (x, u)

• They satisfy a Bellman equation Q∗ = FQ∗

where

(FQ)(x, u) = E g(x, u, w) + α min Q(x, v)

v∈U(x)

where x = f(x, u, w)

• VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs

• They require equal amount of computation ...
they just need more storage

• Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

µ ∗(x) = min Q∗(x, u)
u∈U(x)

• Once Q∗(x, u) are known, the model [g and
E{·}] is not needed. Model-free operation

• Q-Learning (to be discussed later) is a sampling
method that calculates Q∗(x, u) using a simulator
of the system (no model needed)

10

{ }

OTHER DP MODELS

• We have looked so far at the (discrete or con­
tinuous spaces) discounted models for which the

analysis is simplest and results are most powerful

• Other DP models include:

− Undiscounted problems (α = 1): They may
include a special termination state (stochas­
tic shortest path problems)

− Continuous-time finite-state MDP: The time
between transitions is random and state-and­
control-dependent (typical in queueing sys­
tems, called Semi-Markov MDP). These can
be viewed as discounted problems with state­
and-control-dependent discount factors

• Continuous-time, continuous-space models: Clas­
sical automatic control, process control, robotics

− Substantial differences from discrete-time

− Mathematically more complex theory (par­
ticularly for stochastic problems)

− Deterministic versions can be analyzed using
classical optimal control theory

− Admit treatment by DP, based on time dis­
cretization 11

CONTINUOUS-TIME MODELS

• System equation: dx(t)/dt = f x(t), u(t)
 ∞

• Cost function: g x(t), u(t)
0

• Optimal cost starting from x: J∗(x)

• δ-Discretization of time: xk+1 = xk+δ·f(xk, uk)

• Bellman equation for the δ-discretized problem:

Jδ
∗(x) = min δ · g(x, u) + Jδ

∗ x + δ · f(x, u)
u

• Take δ → 0, to obtain the Hamilton-Jacobi-
Bellman equation [assuming limδ→0 J∗(x) = J∗(x)] δ

0 = min g(x, u) +∇J∗(x)′f(x, u) , ∀ x
u

• Policy Iteration (informally):

− Policy evaluation: Given current µ, solve

0 = g x, µ(x) +∇Jµ(x)′f x, µ(x) , ∀ x

− Policy improvement: Find

µ(x) ∈ argmin g(x, u)+∇Jµ(x)′f(x, u) , ∀ x
u

• Note: Need to learn ∇Jµ(x) NOT Jµ(x)

12

(t)/dt = f
(

x(t), u(t)
)

(

x(t), u(t)
)

∗(x)

e: xk+1 = xk+δ·f(xk, uk)

J∗
δ (x) = min

u

{

δ · g(x, u) + J∗
δ

(

x+ δ · f(x, u)
)}

mδ→0 J∗
δ (x) = J∗(x)]

0 = min
u

{

g(x, u) +∇J∗(x)′f(x, u)
}

,

0 = g
(

x, µ(x)
)

+∇Jµ(x)′f
(

x, µ(x)
)

,

µ(x) ∈ argmin
u

{

g(x, u)+∇Jµ(x)′f(x, u)
}

,

A MORE GENERAL/ABSTRACT VIEW OF DP

• Let Y be a real vector space with a norm I · I

• A function F : Y → Y is said to be a contrac­
tion mapping if for some ρ ∈ (0, 1), we have

IFy − FzI ≤ ρIy − zI, for all y, z ∈ Y.

ρ is called the modulus of contraction of F .

• Important example: Let X be a set (e.g., state

space in DP), v : X → ℜ be a positive-valued

function. Let B(X) be the set of all functions

J : X → ℜ such that J(x)/v(x) is bounded over

x.

• We define a norm on B(X), called the weighted

sup-norm, by

|J(x)|
IJI = max .

x∈X v(x)

• Important special case: The discounted prob­
lem mappings T and Tµ [for v(x) ≡ 1, ρ = α].

13

CONTRACTION MAPPINGS: AN EXAMPLE

• Consider extension from finite to countable state
space, X = {1, 2, . . .}, and a weighted sup norm
with respect to which the one stage costs are bounded

• Suppose that Tµ has the form

(TµJ)(i) = bi + α aij J(j), ∀ i = 1, 2, . . .

j∈X

where bi and aij are some scalars. Then Tµ is a
contraction with modulus ρ if and only if

L

j∈X |aij | v(j)
≤ ρ, ∀ i = 1, 2, . . .

v(i)

• Consider T ,

(TJ)(i) = min (TµJ)(i), ∀ i = 1, 2, . . .
µ

where for each µ ∈ M , Tµ is a contraction map­
ping with modulus ρ. Then T is a contraction
mapping with modulus ρ

• Allows extensions of main DP results from
bounded one-stage cost to unbounded one-stage
cost. 14

∑

j∈X

CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: If

F : B(X) B(X) is a contraction with modulus
ρ ∈ (0, 1), then there exists a unique J∗ ∈ B(X)
such that

J∗ = FJ∗ .

Furthermore, if J is any function in B(X), then
{F kJ} converges to J∗ and we have

IF kJ − J∗I ≤ ρkIJ − J∗I, k = 1, 2,

• This is a special case of a general result for
contraction mappings F : Y → Y over normed
vector spaces Y that are complete: every sequence
{yk} that is Cauchy (satisfies Iym − ynI → 0 as
m,n → ∞) converges.

• The space B(X) is complete (see the text for a
proof).

15

7→

ABSTRACT FORMS OF DP

• We consider an abstract form of DP based on
monotonicity and contraction

• Abstract Mapping: Denote R(X): set of real­
valued functions J : X → ℜ, and let H : X ×U ×
R(X) → ℜ be a given mapping. We consider the
mapping

(TJ)(x) = min H(x, u, J), ∀ x ∈ X.

u∈U(x)

• We assume that (TJ)(x) > −∞ for all x ∈ X,
so T maps R(X) into R(X).

• Abstract Policies: Let M be the set of “poli­
cies”, i.e., functions µ such that µ(x) ∈ U(x) for
all x ∈ X.

• For each µ ∈ M, we consider the mapping
Tµ : R(X) R(X) defined by

(TµJ)(x) = H x, µ(x), J , ∀ x ∈ X.

• Find a function J∗ ∈ R(X) such that

J∗(x) = min H(x, u, J∗), ∀ x ∈ X
u∈U(x)

16

()

7→

�

EXAMPLES

•	 Discounted problems

H(x, u, J) = E g(x, u, w) + αJ f(x, u, w)

• Discounted “discrete-state continuous-time”
Semi-Markov Problems (e.g., queueing)

n

H(x, u, J) = G(x, u) + mxy(u)J(y)
y=1

where mxy are “discounted” transition probabili­
ties, defined by the distribution of transition times

•	 Minimax Problems/Games

 	

H(x, u, J) = max g(x, u, w)+αJ f(x, u, w)
w∈W (x,u)

•	 Shortest Path Problems

axu + J(u) if u = d,
H(x, u, J) =

axd	 if u = d

where d is the destination. There are stochastic
and minimax versions of this problem

17

n
∑

y=1

(

{

6

{ ()}

6

)

6

ASSUMPTIONS

′ ′• Monotonicity: If J, J ∈ R(X) and J ≤ J ,

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x)

• We can show all the standard analytical and
computational results of discounted DP if mono-
tonicity and the following assumption holds:

• Contraction:

− For every J ∈ B(X), the functions TµJ and
TJ belong to B(X)

′− For some α ∈ (0, 1), and all µ and J, J ∈
B(X), we have

ITµJ − TµJ ′I ≤ αIJ − J ′I

• With just monotonicity assumption (as in undis­
counted problems) we can still show various forms

of the basic results under appropriate conditions

• A weaker substitute for contraction assumption
is semicontractiveness: (roughly) for some µ, Tµ

is a contraction and for others it is not; also the
“noncontractive” µ are not optimal

18

RESULTS USING CONTRACTION

• Proposition 1: The mappings Tµ and T are
weighted sup-norm contraction mappings with mod­
ulus α over B(X), and have unique fixed points
in B(X), denoted Jµ and J∗, respectively (cf.
Bellman’s equation).

Proof: From the contraction property of H.

• Proposition 2: For any J ∈ B(X) and µ ∈ M,

lim Tµ
kJ = Jµ, lim T kJ = J∗

k→∞ k→∞

(cf. convergence of value iteration).

Proof: From the contraction property of Tµ and
T .

• Proposition 3: We have TµJ∗ = TJ∗ if and
only if Jµ = J∗ (cf. optimality condition).

Proof: TµJ∗ = TJ∗, then TµJ∗ = J∗, implying
J∗ = Jµ. Conversely, if Jµ = J∗, then TµJ∗ =
TµJµ = Jµ = J∗ = TJ∗ .

19

RESULTS USING MON. AND CONTRACTION

• Optimality of fixed point:

J∗(x) = min Jµ(x), ∀ x ∈ X
µ∈M

• Existence of a nearly optimal policy: For every
ǫ > 0, there exists µǫ ∈ M such that

J∗(x) ≤ Jµǫ(x) ≤ J∗(x) + ǫ, ∀ x ∈ X

• Nonstationary policies: Consider the set Π of
all sequences π = {µ0, µ1, . . .} with µk ∈ M for
all k, and define

Jπ(x) = lim inf (Tµ0 Tµ1 · · · TµkJ)(x), ∀ x ∈ X,
k→∞

with J being any function (the choice of J does
not matter)

• We have

J∗(x) = min Jπ(x), ∀ x ∈ X
π∈Π

20

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J∗(x) = lim (T kJ)(x), ∀ x
k→∞

•	 Policy iteration: Given µk

− Policy evaluation: Find J by solving kµ

J = T kJ kkµ µ µ

− Policy improvement: Find µk+1 such that

T k+1 J k = TJ kµ µ µ

• Optimistic PI: This is PI, where policy evalu­
ation is carried out by a finite number of VI

− Shorthand definition: For some integers mk

mkTµkJk = TJk, Jk+1 = T k Jk, k = 0, 1, . . .
µ

− If mk ≡ 1 it becomes VI

− If mk = ∞ it becomes PI

− For intermediate values of mk, it is generally

more efficient than either VI or PI

21

�

ASYNCHRONOUS ALGORITHMS

• Motivation for asynchronous algorithms

− Faster convergence

− Parallel and distributed computation

− Simulation-based implementations

• General framework: Partition X into disjoint
nonempty subsets X1, . . . , Xm, and use separate
processor ℓ updating J(x) for x ∈ Xℓ

• Let J be partitioned as

J = (J1, . . . , Jm),

where Jℓ is the restriction of J on the set Xℓ.

• Synchronous VI algorithm:

J t+1 (x) = 1, . . . , J
t x ∈ Xℓ, ℓ = 1, . . . ,m T (J t
m)(x),ℓ

• Asynchronous VI algorithm: For some subsets
of times Rℓ,

τℓ1(t) τℓm(t)

J t+1 T (J , . . . , Jm)(x) if t ∈ Rℓ,1(x) = ℓ J t
ℓ(x) if t /∈ Rℓ

where t − τℓj(t) are communication “delays”

22

{

�

ONE-STATE-AT-A-TIME ITERATIONS

• Important special case: Assume n “states”, a
separate processor for each state, and no delays

• Generate a sequence of states {x0, x1, . . .}, gen­
erated in some way, possibly by simulation (each
state is generated infinitely often)

•	 Asynchronous VI:

J t+1 T (J1
t , . . . , Jnt)(ℓ) if ℓ = xt,

= ℓ J t	 if ℓ = xt,ℓ

where T (J1
t , . . . , Jnt)(ℓ) denotes the ℓ-th compo­

nent of the vector

T (J1
t , . . . , Jnt) = TJ t,

• The special case where

{x0, x1, . . .} = {1, . . . , n, 1, . . . , n, 1, . . .}

is the Gauss-Seidel method

23

{

6

ASYNCHRONOUS CONV. THEOREM I

• KEY FACT: VI and also PI (with some modifi­
cations) still work when implemented asynchronously

• Assume that for all ℓ, j = 1, . . . ,m, Rℓ is infinite
and limt→∞ τℓj(t) = ∞

• Proposition: Let T have a unique fixed point J∗ ,
and assume that there is a sequence of nonempty
subsets S(k) ⊂ R(X) with S(k + 1) ⊂ S(k) for
all k, and with the following properties:

(1) Synchronous Convergence Condition: Every
sequence {Jk} with Jk ∈ S(k) for each k,
converges pointwise to J∗ . Moreover,

TJ ∈ S(k+1), ∀ J ∈ S(k), k = 0, 1,

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = S1(k)× · · · × Sm(k),

where Sℓ(k) is a set of real-valued functions
on Xℓ, ℓ = 1, . . . ,m.

Then for every J ∈ S(0), the sequence {J t} gen­
erated by the asynchronous algorithm converges
pointwise to J∗ . 24

(0)
) + 1)

∗

(0)

(0)
) + 1)

∗

Iterations

ASYNCHRONOUS CONV. THEOREM II

• Interpretation of assumptions:

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

• Convergence mechanism:

S(0)
S(k)

S(k + 1) J∗

J = (J1, J2)

J1 Iterations

J2 Iteration

Key: “Independent” component-wise improve­
ment. An asynchronous component iteration from
any J in S(k) moves into the corresponding com­
ponent portion of S(k + 1)

25

S(0)
S(k)

S(k + 1) J∗

J = (J1, J2)

S1(0)

S2(0)
T J

S(0)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

S1(0)

TJ

(0) S(k)

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

