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APPROXIMATE DYNAMIC PROGRAMMING
 

BRIEF OUTLINE I
 

• Our subject: 

− Large-scale DP based on approximations and 
in part on simulation. 

− This has been a research area of great inter­
est for the last 25 years known under various 
names (e.g., reinforcement learning, neuro­
dynamic programming) 

− Emerged through an enormously fruitful cross-
fertilization of ideas from artificial intelligence 
and optimization/control theory 

− Deals with control of dynamic systems under 
uncertainty, but applies more broadly (e.g., 
discrete deterministic optimization) 

− A vast range of applications in control the­
ory, operations research, artificial intelligence, 
and beyond ... 

− The subject is broad with rich variety of 
theory/math, algorithms, and applications. 
Our focus will be mostly on algorithms ... 
less on theory and modeling 
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APPROXIMATE DYNAMIC PROGRAMMING
 

BRIEF OUTLINE II
 

• Our aim: 

− A state-of-the-art account of some of the ma­
jor topics at a graduate level 

− Show how to use approximation and simula­
tion to address the dual curses of DP: di­
mensionality and modeling 

• Our 6-lecture plan: 

− Two lectures on exact DP with emphasis on 
infinite horizon problems and issues of large­
scale computational methods 

− One lecture on general issues of approxima­
tion and simulation for large-scale problems 

− One lecture on approximate policy iteration 
based on temporal differences (TD)/projected 
equations/Galerkin approximation 

− One lecture on aggregation methods 

− One lecture on Q-learning, and other meth­
ods, such as approximation in policy space 

3



APPROXIMATE DYNAMIC PROGRAMMING
 

LECTURE 1
 

LECTURE OUTLINE
 

• Introduction to DP and approximate DP 

• Finite horizon problems 

• The DP algorithm for finite horizon problems
 

• Infinite horizon problems 

• Basic theory of discounted infinite horizon prob­
lems 
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DP AS AN OPTIMIZATION METHODOLOGY
 

•	 Generic optimization problem: 

min g(u) 
u∈U 

where u is the optimization/decision variable, g(u) 
is the cost function, and U is the constraint set 

• Categories of problems: 

− Discrete (U is finite) or continuous 

− Linear (g is linear and U is polyhedral) or 
nonlinear 

− Stochastic or deterministic: In stochastic prob­
lems the cost involves a stochastic parameter 
w, which is averaged, i.e., it has the form 

 	  

g(u) = Ew G(u,w)

where w is a random parameter. 

•	 DP deals with multistage stochastic problems 

− Information about w is revealed in stages 

− Decisions are also made in stages and make 
use of the available information 

− Its methodology is “different”
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BASIC STRUCTURE OF STOCHASTIC DP
 

• Discrete-time system 

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 

− k: Discrete time 

− xk: State; summarizes past information that 
is relevant for future optimization 

− uk: Control; decision to be selected at time 
k from a given set 

− wk: Random parameter (also called “distur­
bance” or “noise” depending on the context) 

− N : Horizon or number of times control is 
applied 

• Cost function that is additive over time 

  


N−1
 

E gN (xN ) + gk(xk, uk, wk)
k=0 

• Alternative system description: P (xk+1 | xk, uk) 

xk+1 = wk with P (wk | xk, uk) = P (xk+1 | xk, uk) 
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INVENTORY CONTROL EXAMPLE
 

Inventory 
System 

Stock Ordered at 
Period k 

Stock at Period k Stock at Period k + 1 

Demand at Period k 

xk 

wk 

xk + 1 = xk + uk ­ wk 

uk 
Cos t of P e riod k 

c uk + r (xk  + uk - wk) 

• Discrete-time system 

xk+1 = fk(xk, uk, wk) = xk + uk − wk 

• Cost function that is additive over time
 

N−1 

E gN (xN ) + gk(xk, uk, wk) 
k=0 

N−1 
  

= E cuk + r(xk + uk − wk)
k=0
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ADDITIONAL ASSUMPTIONS
 

• Probability distribution of wk does not depend 
on past values wk−1, . . . , w0, but may depend on 
xk and uk 

− Otherwise past values of w, x, or u would be 
useful for future optimization 

• The constraint set from which uk is chosen at 
time k depends at most on xk, not on prior x or 
u 

• Optimization over policies (also called feedback 
control laws): These are rules/functions 

uk = µk(xk), k = 0, . . . , N − 1 

that map state/inventory to control/order (closed­
loop optimization, use of feedback) 

• MAJOR DISTINCTION: We minimize over se­
quences of functions (mapping inventory to order)
 

{µ0, µ1, . . . , µN−1} 

NOT over sequences of controls/orders 

{u0, u1, . . . , uN−1}
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GENERIC FINITE-HORIZON PROBLEM
 

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N −1 

• Control contraints uk ∈ Uk(xk) 

• Probability distribution Pk(· | xk, uk) of wk 

• Policies π = {µ0, . . . , µN−1}, where µk maps 
states xk into controls uk = µk(xk) and is such 
that µk(xk) ∈ Uk(xk) for all xk 

• Expected cost of π starting at x0 is 

N−1 

Jπ(x0) = E gN (xN ) + gk(xk, µk(xk), wk)
 
k=0
 

• Optimal cost function 

J∗(x0) = min Jπ(x0)
π 

• Optimal policy π∗ satisfies 

Jπ∗ (x0) = J∗(x0) 

When produced by DP, π∗ is independent of x0.
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PRINCIPLE OF OPTIMALITY
 

∗ ∗ ∗• Let π∗ = {µ0, µ 1, . . . , µ } be optimal policy N−1

• Consider the “tail subproblem” whereby we are 
at xk at time k and wish to minimize the “cost­
to-go” from time k to time N 

N−1 

E gN (xN ) + gℓ xℓ, µℓ(xℓ), wℓ 

ℓ=k 

∗ ∗ ∗and the “tail policy” {µ , µ k+1, . . . , µ }k N−1

Tail Subproblem 
x
k 

k N Time 

• Principle of optimality: The tail policy is opti­
mal for the tail subproblem (optimization of the
 
future does not depend on what we did in the past)
 

• DP solves ALL the tail subroblems 

• At the generic step, it solves ALL tail subprob­
lems of a given time length, using the solution of 
the tail subproblems of shorter time length 
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DP ALGORITHM
 

• Computes for all k and states xk: 

Jk(xk): opt. cost of tail problem starting at xk 

• Initial condition: 

JN (xN ) = gN (xN ) 

Go backwards, k = N − 1, . . . , 0, using 

Jk(xk) = min E gk(xk, uk, wk) 
uk ∈Uk (xk) wk 

+ Jk+1 fk(xk, uk, wk) , 

• To solve tail subproblem at time k minimize 

kth-stage cost + Opt. cost of next tail problem 

starting from next state at time k + 1 

• Then J0(x0), generated at the last step, is equal 
to the optimal cost J∗(x0). Also, the policy 

∗ ∗π∗ = {µ0, . . . , µ }N−1


∗
where µ (xk) minimizes in the right side above for k

each xk and k, is optimal 

• Proof by induction 
11
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PRACTICAL DIFFICULTIES OF DP
 

• The curse of dimensionality 

− Exponential growth of the computational and 
storage requirements as the number of state 
variables and control variables increases 

− Quick explosion of the number of states in 
combinatorial problems 

• The curse of modeling 

− Sometimes a simulator of the system is easier 
to construct than a model 

• There may be real-time solution constraints 

− A family of problems may be addressed. The 
data of the problem to be solved is given with 
little advance notice 

− The problem data may change as the system
 
is controlled – need for on-line replanning
 

• All of the above are motivations for approxi­
mation and simulation 
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A MAJOR IDEA: COST APPROXIMATION
 

• Use a policy computed from the DP equation 
where the optimal cost-to-go function Jk+1 is re­
placed by an approximation J̃k+1. 

• Apply µk(xk), which attains the minimum in 

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) 
uk ∈Uk (xk ) 

• Some approaches: 

(a) Problem Approximation: Use J̃k derived from 
a related but simpler problem 

(b) Parametric Cost-to-Go Approximation: Use 
˜as Jk a function of a suitable parametric 

form, whose parameters are tuned by some 
heuristic or systematic scheme (we will mostly 
focus on this) 

− This is a major portion of Reinforcement 
Learning/Neuro-Dynamic Programming 

˜(c)	 Rollout Approach: Use as Jk the cost of 
some suboptimal policy, which is calculated 
either analytically or by simulation 
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ROLLOUT ALGORITHMS
 

• At each k and state xk, use the control µk(xk) 
that minimizes in 

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) , 
uk ∈Uk (xk ) 

where J̃k+1 is the cost-to-go of some heuristic pol­
icy (called the base policy). 

• Cost improvement property: The rollout algo­
rithm achieves no worse (and usually much better) 
cost than the base policy starting from the same 
state. 

• Main difficulty: Calculating J̃k+1(x) may be 
computationally intensive if the cost-to-go of the 
base policy cannot be analytically calculated. 

− May involve Monte Carlo simulation if the 
problem is stochastic. 

− Things improve in the deterministic case (an 
important application is discrete optimiza­
tion). 

− Connection w/ Model Predictive Control (MPC). 
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INFINITE HORIZON PROBLEMS
 

• Same as the basic problem, but: 

− The number of stages is infinite. 

− The system is stationary. 

• Total cost problems: Minimize 

N−1 

Jπ(x0) = lim E αkg xk, µk(xk), wk 
N→∞ wk 

k=0,1,... k=0 

− Discounted problems (α < 1, bounded g) 

− Stochastic shortest path problems (α = 1, 
finite-state system with a termination state) 
- we will discuss sparringly 

− Discounted and undiscounted problems with 
unbounded cost per stage - we will not cover 

• Average cost problems - we will not cover 

• Infinite horizon characteristics: 

− Challenging analysis, elegance of solutions 
and algorithms 

− Stationary policies π = {µ, µ, . . .} and sta­
tionary forms of DP play a special role 
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DISCOUNTED PROBLEMS/BOUNDED COST
 

• Stationary system 

xk+1 = f(xk, uk, wk), k = 0, 1, . . . 

• Cost of a policy π = {µ0, µ1, . . .} 

N−1 

Jπ(x0) = lim E αkg xk, µk(xk), wk 
N→∞ wk 

k=0,1,... k=0 

with α < 1, and g is bounded [for some M , we 
have |g(x, u, w)| ≤ M for all (x, u, w)] 

• Optimal cost function: J∗(x) = minπ Jπ(x) 

• Boundedness of g guarantees that all costs are
 
  

 ≤ Mwell-defined and bounded:  Jπ(x) 1−α 

• All spaces are arbitrary - only boundedness of
 
g is important (there are math fine points, e.g.
 
measurability, but they don’t matter in practice)
 

• Important special case: All underlying spaces 
finite; a (finite spaces) Markovian Decision Prob­
lem or MDP 

• All algorithms ultimately work with a finite
 
spaces MDP approximating the original problem
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SHORTHAND NOTATION FOR DP MAPPINGS
 

• For any function J of x, denote 

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x 
u∈U(x) w 

• TJ is the optimal cost function for the one­
stage problem with stage cost g and terminal cost 
function αJ . 

• T operates on bounded functions of x to pro­
duce other bounded functions of x 

• For any stationary policy µ, denote 

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x 
w 

• The critical structure of the problem is cap­
tured in T and Tµ 

• The entire theory of discounted problems can 
be developed in shorthand using T and Tµ 

• True for many other DP problems. 

• T and Tµ provide a powerful unifying framework 
for DP. This is the essence of the book “Abstract 
Dynamic Programming” 
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FINITE-HORIZON COST EXPRESSIONS 

• Consider anN -stage policy πN = {µ0, µ1, . . . , µN−1}0 

1

with a terminal cost J : 

N−1 

JπN 

+ αJπN 

0
(x0) = E αNJ(xk) + αℓg xℓ, µℓ(xℓ), wℓ
 

ℓ=0
 

g x0, µ0(x0), w0
 (x1)
= E
 

JπN 
1

= {µ1, µ2, . . . , µN−1} 

(Tµ0
 )(x0)
= 

where π1 
N 

• By induction we have
 

( )J xNπ
0
 

= (Tµ0 Tµ1 · · · TµN−1 J)(x), ∀ x
 

0 

• For a stationary policy µ the N -stage cost func­
tion (with terminal cost J) is 

JπN = Tµ
NJ
 

where Tµ
N is the N -fold composition of Tµ 

• Similarly the optimal N -stage cost function 
(with terminal cost J) is TNJ 

• TNJ = T (TN−1J) is just the DP algorithm 
18
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“SHORTHAND” THEORY – A SUMMARY
 

• Infinite horizon cost function expressions [with 
J0(x) ≡ 0] 

Jπ(x) = lim (Tµ0 Tµ1 · · · TµN J0)(x), Jµ(x) = lim (Tµ
NJ0)(x) 

N→∞ N→∞ 

∗ ∗• Bellman’s equation: J = TJ , Jµ = TµJµ 

• Optimality condition: 

∗ ∗ µ: optimal <==> TµJ = TJ

•	 Value iteration: For any (bounded) J 

J∗(x) = lim (T kJ)(x), ∀ x 
k→∞ 

•	 Policy iteration: Given µk, 

− Policy evaluation: Find J by solving kµ

J = T k J kkµ µ µ


− Policy improvement: Find µk+1 such that
 

T k+1 J	 k = TJ kµ µ µ
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TWO KEY PROPERTIES
 

′• Monotonicity property: For any J and J such 
that J(x) ≤ J ′ (x) for all x, and any µ 

(TJ)(x) ≤ (TJ ′ )(x), ∀ x, 

(TµJ)(x) ≤ (TµJ ′ )(x), ∀ x. 

• Constant Shift property: For any J , any scalar 
r, and any µ 

T (J + re) (x) = (TJ)(x) + αr, ∀ x,
 

Tµ(J + re) (x) = (TµJ)(x) + αr, ∀ x, 

where e is the unit function [e(x) ≡ 1]. 

• Monotonicity is present in all DP models (undis­
counted, etc) 

• Constant shift is special to discounted models
 

• Discounted problems have another property 
of major importance: T and Tµ are contraction 
mappings (we will show this later) 
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CONVERGENCE OF VALUE ITERATION
 

• For all bounded J , 

J∗(x) = lim (T kJ)(x), for all x 
k→∞ 

Proof: For simplicity we give the proof for J ≡ 0. 
For any initial state x0, and policy π = {µ0, µ1, . . .}, 

∞ 

Jπ(x0) = E αℓg xℓ, µℓ(xℓ), wℓ
 

ℓ=0
 

k−1
 

= E αℓg xℓ, µℓ(xℓ), wℓ
 

ℓ=0
 

∞ 

+ E αℓg xℓ, µℓ(xℓ), wℓ 

ℓ=k 

The tail portion satisfies 

∞ 

αkM 
E αℓg xℓ, µℓ(xℓ), wℓ ≤ ,

1− α
ℓ=k 

where M ≥ |g(x, u, w)|. Take min over π of both 
sides, then lim as k → ∞. Q.E.D. 
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BELLMAN’S EQUATION
 

∗• The optimal cost function J is a solution of
 
∗Bellman’s equation, J = TJ∗, i.e., for all x, 

∗J∗(x) = min E g(x, u, w) + αJ f(x, u, w) 
u∈U(x) w 

Proof: For all x and k, 

αkM αkM 
J∗(x)− ≤ (T kJ0)(x) ≤ J∗(x) + ,

1− α 1− α

where J0(x) ≡ 0 and M ≥ |g(x, u, w)|. Applying 
T to this relation, and using Monotonicity and 
Constant Shift, 

αk+1M
 
(TJ∗)(x)− ≤ (T k+1J0)(x)


1− α 

αk+1M 
≤ (TJ∗)(x) + 

1− α 

Taking the limit as k → ∞ and using the fact 

lim (T k+1J0)(x) = J∗(x) 
k→∞ 

∗ ∗we obtain J = TJ . Q.E.D.
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THE CONTRACTION PROPERTY
 

• Contraction property: For any bounded func­
tions J and J ′ , and any µ, 

max (TJ)(x)− (TJ ′ )(x) ≤ αmax J(x)− J ′ (x) , 
x x 

max (TµJ)(x)−(TµJ ′ )(x) ≤ αmax J(x)−J ′(x) . 
x x 

Proof: Denote c = maxx∈S J(x)− J ′ (x) . Then 

J(x)− c ≤ J ′ (x) ≤ J(x) + c, ∀ x 

Apply T to both sides, and use the Monotonicity 
and Constant Shift properties: 

(TJ)(x)−αc ≤ (TJ ′ )(x) ≤ (TJ)(x)+αc, ∀ x 

Hence 

(TJ)(x)− (TJ ′ )(x) ≤ αc, ∀ x. 

Q.E.D. 

∗• Note: This implies that J is the unique solu­
∗tion of J = TJ∗, and Jµ is the unique solution 

∗ ∗of J = TJ 23
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NEC. AND SUFFICIENT OPT. CONDITION
 

• A stationary policy µ is optimal if and only if 
µ(x) attains the minimum in Bellman’s equation 
for each x; i.e., 

∗ ∗TJ = TµJ ,
 

or, equivalently, for all x,
 

∗ µ(x) ∈ arg min E g(x, u, w) + αJ f(x, u, w)
 
u∈U(x) w 

∗Proof: If TJ = TµJ∗, then using Bellman’s equa­
∗tion (J = TJ∗), we have 

∗ ∗J = TµJ , 

so by uniqueness of the fixed point of Tµ, we obtain 
∗J = Jµ; i.e., µ is optimal. 

• Conversely, if the stationary policy µ is optimal,
 
∗we have J = Jµ, so 

∗ ∗J = TµJ . 

∗Combining this with Bellman’s Eq. (J = TJ∗), 
∗ ∗we obtain TJ = TµJ . Q.E.D. 
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