
APPROXIMATE DYNAMIC PROGRAMMING

A SERIES OF LECTURES GIVEN AT

TSINGHUA UNIVERSITY

JUNE 2014

DIMITRI P. BERTSEKAS

Based on the books:

(1) “Neuro-Dynamic Programming,” by DPB
and J. N. Tsitsiklis, Athena Scientific,
1996

(2) “Dynamic Programming and Optimal
Control, Vol. II: Approximate Dynamic
Programming,” by DPB, Athena Sci­
entific, 2012

(3) “Abstract Dynamic Programming,” by
DPB, Athena Scientific, 2013

http://www.athenasc.com

For a fuller set of slides, see

http://web.mit.edu/dimitrib/www/publ.html

1

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

http://web.mit.edu/dimitrib/www/publ.html
http://www.athenasc.com

APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE I

• Our subject:

− Large-scale DP based on approximations and
in part on simulation.

− This has been a research area of great inter­
est for the last 25 years known under various
names (e.g., reinforcement learning, neuro­
dynamic programming)

− Emerged through an enormously fruitful cross-
fertilization of ideas from artificial intelligence
and optimization/control theory

− Deals with control of dynamic systems under
uncertainty, but applies more broadly (e.g.,
discrete deterministic optimization)

− A vast range of applications in control the­
ory, operations research, artificial intelligence,
and beyond ...

− The subject is broad with rich variety of
theory/math, algorithms, and applications.
Our focus will be mostly on algorithms ...
less on theory and modeling

2

APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE II

• Our aim:

− A state-of-the-art account of some of the ma­
jor topics at a graduate level

− Show how to use approximation and simula­
tion to address the dual curses of DP: di­
mensionality and modeling

• Our 6-lecture plan:

− Two lectures on exact DP with emphasis on
infinite horizon problems and issues of large­
scale computational methods

− One lecture on general issues of approxima­
tion and simulation for large-scale problems

− One lecture on approximate policy iteration
based on temporal differences (TD)/projected
equations/Galerkin approximation

− One lecture on aggregation methods

− One lecture on Q-learning, and other meth­
ods, such as approximation in policy space

3

APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 1

LECTURE OUTLINE

• Introduction to DP and approximate DP

• Finite horizon problems

• The DP algorithm for finite horizon problems

• Infinite horizon problems

• Basic theory of discounted infinite horizon prob­
lems

4

DP AS AN OPTIMIZATION METHODOLOGY

•	 Generic optimization problem:

min g(u)
u∈U

where u is the optimization/decision variable, g(u)
is the cost function, and U is the constraint set

• Categories of problems:

− Discrete (U is finite) or continuous

− Linear (g is linear and U is polyhedral) or
nonlinear

− Stochastic or deterministic: In stochastic prob­
lems the cost involves a stochastic parameter
w, which is averaged, i.e., it has the form

 	

g(u) = Ew G(u,w)

where w is a random parameter.

•	 DP deals with multistage stochastic problems

− Information about w is revealed in stages

− Decisions are also made in stages and make
use of the available information

− Its methodology is “different”

5

BASIC STRUCTURE OF STOCHASTIC DP

• Discrete-time system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1

− k: Discrete time

− xk: State; summarizes past information that
is relevant for future optimization

− uk: Control; decision to be selected at time
k from a given set

− wk: Random parameter (also called “distur­
bance” or “noise” depending on the context)

− N : Horizon or number of times control is
applied

• Cost function that is additive over time

N−1

E gN (xN) + gk(xk, uk, wk)
k=0

• Alternative system description: P (xk+1 | xk, uk)

xk+1 = wk with P (wk | xk, uk) = P (xk+1 | xk, uk)

6

INVENTORY CONTROL EXAMPLE

Inventory
System

Stock Ordered at
Period k

Stock at Period k Stock at Period k + 1

Demand at Period k

xk

wk

xk + 1 = xk + uk ­ wk

uk
Cos t of P e riod k

c uk + r (xk + uk - wk)

• Discrete-time system

xk+1 = fk(xk, uk, wk) = xk + uk − wk

• Cost function that is additive over time

N−1

E gN (xN) + gk(xk, uk, wk)
k=0

N−1

= E cuk + r(xk + uk − wk)
k=0

7

{

∑

}

{

∑

}

ADDITIONAL ASSUMPTIONS

• Probability distribution of wk does not depend
on past values wk−1, . . . , w0, but may depend on
xk and uk

− Otherwise past values of w, x, or u would be
useful for future optimization

• The constraint set from which uk is chosen at
time k depends at most on xk, not on prior x or
u

• Optimization over policies (also called feedback
control laws): These are rules/functions

uk = µk(xk), k = 0, . . . , N − 1

that map state/inventory to control/order (closed­
loop optimization, use of feedback)

• MAJOR DISTINCTION: We minimize over se­
quences of functions (mapping inventory to order)

{µ0, µ1, . . . , µN−1}

NOT over sequences of controls/orders

{u0, u1, . . . , uN−1}

8

GENERIC FINITE-HORIZON PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N −1

• Control contraints uk ∈ Uk(xk)

• Probability distribution Pk(· | xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

N−1

Jπ(x0) = E gN (xN) + gk(xk, µk(xk), wk)

k=0

• Optimal cost function

J∗(x0) = min Jπ(x0)
π

• Optimal policy π∗ satisfies

Jπ∗ (x0) = J∗(x0)

When produced by DP, π∗ is independent of x0.

9

{

∑

}

0

PRINCIPLE OF OPTIMALITY

∗ ∗ ∗• Let π∗ = {µ0, µ 1, . . . , µ } be optimal policy N−1

• Consider the “tail subproblem” whereby we are
at xk at time k and wish to minimize the “cost­
to-go” from time k to time N

N−1

E gN (xN) + gℓ xℓ, µℓ(xℓ), wℓ

ℓ=k

∗ ∗ ∗and the “tail policy” {µ , µ k+1, . . . , µ }k N−1

Tail Subproblem
x
k

k N Time

• Principle of optimality: The tail policy is opti­
mal for the tail subproblem (optimization of the

future does not depend on what we did in the past)

• DP solves ALL the tail subroblems

• At the generic step, it solves ALL tail subprob­
lems of a given time length, using the solution of
the tail subproblems of shorter time length

10

{

∑

()

}

DP ALGORITHM

• Computes for all k and states xk:

Jk(xk): opt. cost of tail problem starting at xk

• Initial condition:

JN (xN) = gN (xN)

Go backwards, k = N − 1, . . . , 0, using

Jk(xk) = min E gk(xk, uk, wk)
uk ∈Uk (xk) wk

+ Jk+1 fk(xk, uk, wk) ,

• To solve tail subproblem at time k minimize

kth-stage cost + Opt. cost of next tail problem

starting from next state at time k + 1

• Then J0(x0), generated at the last step, is equal
to the optimal cost J∗(x0). Also, the policy

∗ ∗π∗ = {µ0, . . . , µ }N−1

∗
where µ (xk) minimizes in the right side above for k

each xk and k, is optimal

• Proof by induction
11

{

()}

PRACTICAL DIFFICULTIES OF DP

• The curse of dimensionality

− Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

− Quick explosion of the number of states in
combinatorial problems

• The curse of modeling

− Sometimes a simulator of the system is easier
to construct than a model

• There may be real-time solution constraints

− A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

− The problem data may change as the system

is controlled – need for on-line replanning

• All of the above are motivations for approxi­
mation and simulation

12

�	 �

A MAJOR IDEA: COST APPROXIMATION

• Use a policy computed from the DP equation
where the optimal cost-to-go function Jk+1 is re­
placed by an approximation J̃k+1.

• Apply µk(xk), which attains the minimum in

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk)
uk ∈Uk (xk)

• Some approaches:

(a) Problem Approximation: Use J̃k derived from
a related but simpler problem

(b) Parametric Cost-to-Go Approximation: Use
˜as Jk a function of a suitable parametric

form, whose parameters are tuned by some
heuristic or systematic scheme (we will mostly
focus on this)

− This is a major portion of Reinforcement
Learning/Neuro-Dynamic Programming

˜(c)	 Rollout Approach: Use as Jk the cost of
some suboptimal policy, which is calculated
either analytically or by simulation

13

(

)
)

ROLLOUT ALGORITHMS

• At each k and state xk, use the control µk(xk)
that minimizes in

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) ,
uk ∈Uk (xk)

where J̃k+1 is the cost-to-go of some heuristic pol­
icy (called the base policy).

• Cost improvement property: The rollout algo­
rithm achieves no worse (and usually much better)
cost than the base policy starting from the same
state.

• Main difficulty: Calculating J̃k+1(x) may be
computationally intensive if the cost-to-go of the
base policy cannot be analytically calculated.

− May involve Monte Carlo simulation if the
problem is stochastic.

− Things improve in the deterministic case (an
important application is discrete optimiza­
tion).

− Connection w/ Model Predictive Control (MPC).

14

{ ()}

INFINITE HORIZON PROBLEMS

• Same as the basic problem, but:

− The number of stages is infinite.

− The system is stationary.

• Total cost problems: Minimize

N−1

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

− Discounted problems (α < 1, bounded g)

− Stochastic shortest path problems (α = 1,
finite-state system with a termination state)
- we will discuss sparringly

− Discounted and undiscounted problems with
unbounded cost per stage - we will not cover

• Average cost problems - we will not cover

• Infinite horizon characteristics:

− Challenging analysis, elegance of solutions
and algorithms

− Stationary policies π = {µ, µ, . . .} and sta­
tionary forms of DP play a special role

15

{

∑

()

}

DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

with α < 1, and g is bounded [for some M , we
have |g(x, u, w)| ≤ M for all (x, u, w)]

• Optimal cost function: J∗(x) = minπ Jπ(x)

• Boundedness of g guarantees that all costs are

 ≤ Mwell-defined and bounded: Jπ(x) 1−α

• All spaces are arbitrary - only boundedness of

g is important (there are math fine points, e.g.

measurability, but they don’t matter in practice)

• Important special case: All underlying spaces
finite; a (finite spaces) Markovian Decision Prob­
lem or MDP

• All algorithms ultimately work with a finite

spaces MDP approximating the original problem

16

{

∑

)

}

SHORTHAND NOTATION FOR DP MAPPINGS

• For any function J of x, denote

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x
u∈U(x) w

• TJ is the optimal cost function for the one­
stage problem with stage cost g and terminal cost
function αJ .

• T operates on bounded functions of x to pro­
duce other bounded functions of x

• For any stationary policy µ, denote

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x
w

• The critical structure of the problem is cap­
tured in T and Tµ

• The entire theory of discounted problems can
be developed in shorthand using T and Tµ

• True for many other DP problems.

• T and Tµ provide a powerful unifying framework
for DP. This is the essence of the book “Abstract
Dynamic Programming”

17

{ ()}

{ () ()}

�

�

FINITE-HORIZON COST EXPRESSIONS

• Consider anN -stage policy πN = {µ0, µ1, . . . , µN−1}0

1

with a terminal cost J :

N−1

JπN

+ αJπN

0
(x0) = E αNJ(xk) + αℓg xℓ, µℓ(xℓ), wℓ

ℓ=0

g x0, µ0(x0), w0
 (x1)
= E

JπN
1

= {µ1, µ2, . . . , µN−1}

(Tµ0
)(x0)
=

where π1
N

• By induction we have

()J xNπ
0

= (Tµ0 Tµ1 · · · TµN−1 J)(x), ∀ x

0

• For a stationary policy µ the N -stage cost func­
tion (with terminal cost J) is

JπN = Tµ
NJ

where Tµ
N is the N -fold composition of Tµ

• Similarly the optimal N -stage cost function
(with terminal cost J) is TNJ

• TNJ = T (TN−1J) is just the DP algorithm
18

{

∑

()

}

{

()

}

“SHORTHAND” THEORY – A SUMMARY

• Infinite horizon cost function expressions [with
J0(x) ≡ 0]

Jπ(x) = lim (Tµ0 Tµ1 · · · TµN J0)(x), Jµ(x) = lim (Tµ
NJ0)(x)

N→∞ N→∞

∗ ∗• Bellman’s equation: J = TJ , Jµ = TµJµ

• Optimality condition:

∗ ∗ µ: optimal <==> TµJ = TJ

•	 Value iteration: For any (bounded) J

J∗(x) = lim (T kJ)(x), ∀ x
k→∞

•	 Policy iteration: Given µk,

− Policy evaluation: Find J by solving kµ

J = T k J kkµ µ µ

− Policy improvement: Find µk+1 such that

T k+1 J	 k = TJ kµ µ µ

19

TWO KEY PROPERTIES

′• Monotonicity property: For any J and J such
that J(x) ≤ J ′ (x) for all x, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x.

• Constant Shift property: For any J , any scalar
r, and any µ

T (J + re) (x) = (TJ)(x) + αr, ∀ x,

Tµ(J + re) (x) = (TµJ)(x) + αr, ∀ x,

where e is the unit function [e(x) ≡ 1].

• Monotonicity is present in all DP models (undis­
counted, etc)

• Constant shift is special to discounted models

• Discounted problems have another property
of major importance: T and Tµ are contraction
mappings (we will show this later)

20

()

()

CONVERGENCE OF VALUE ITERATION

• For all bounded J ,

J∗(x) = lim (T kJ)(x), for all x
k→∞

Proof: For simplicity we give the proof for J ≡ 0.
For any initial state x0, and policy π = {µ0, µ1, . . .},

∞

Jπ(x0) = E αℓg xℓ, µℓ(xℓ), wℓ

ℓ=0

k−1

= E αℓg xℓ, µℓ(xℓ), wℓ

ℓ=0

∞

+ E αℓg xℓ, µℓ(xℓ), wℓ

ℓ=k

The tail portion satisfies

∞

αkM
E αℓg xℓ, µℓ(xℓ), wℓ ≤ ,

1− α
ℓ=k

where M ≥ |g(x, u, w)|. Take min over π of both
sides, then lim as k → ∞. Q.E.D.

21

{

∑

(

()
)

}

{

∑

(

()
)

}

{

∑

(

()
)

}

∣

∣

∣

∣

∣

{

∑

(

()
)

}
∣

∣

∣

∣

∣

BELLMAN’S EQUATION

∗• The optimal cost function J is a solution of

∗Bellman’s equation, J = TJ∗, i.e., for all x,

∗J∗(x) = min E g(x, u, w) + αJ f(x, u, w)
u∈U(x) w

Proof: For all x and k,

αkM αkM
J∗(x)− ≤ (T kJ0)(x) ≤ J∗(x) + ,

1− α 1− α

where J0(x) ≡ 0 and M ≥ |g(x, u, w)|. Applying
T to this relation, and using Monotonicity and
Constant Shift,

αk+1M

(TJ∗)(x)− ≤ (T k+1J0)(x)

1− α

αk+1M
≤ (TJ∗)(x) +

1− α

Taking the limit as k → ∞ and using the fact

lim (T k+1J0)(x) = J∗(x)
k→∞

∗ ∗we obtain J = TJ . Q.E.D.

22

THE CONTRACTION PROPERTY

• Contraction property: For any bounded func­
tions J and J ′ , and any µ,

max (TJ)(x)− (TJ ′)(x) ≤ αmax J(x)− J ′ (x) ,
x x

max (TµJ)(x)−(TµJ ′)(x) ≤ αmax J(x)−J ′(x) .
x x

Proof: Denote c = maxx∈S J(x)− J ′ (x) . Then

J(x)− c ≤ J ′ (x) ≤ J(x) + c, ∀ x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ)(x)−αc ≤ (TJ ′)(x) ≤ (TJ)(x)+αc, ∀ x

Hence

(TJ)(x)− (TJ ′)(x) ≤ αc, ∀ x.

Q.E.D.

∗• Note: This implies that J is the unique solu­
∗tion of J = TJ∗, and Jµ is the unique solution

∗ ∗of J = TJ 23

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

NEC. AND SUFFICIENT OPT. CONDITION

• A stationary policy µ is optimal if and only if
µ(x) attains the minimum in Bellman’s equation
for each x; i.e.,

∗ ∗TJ = TµJ ,

or, equivalently, for all x,

∗ µ(x) ∈ arg min E g(x, u, w) + αJ f(x, u, w)

u∈U(x) w

∗Proof: If TJ = TµJ∗, then using Bellman’s equa­
∗tion (J = TJ∗), we have

∗ ∗J = TµJ ,

so by uniqueness of the fixed point of Tµ, we obtain
∗J = Jµ; i.e., µ is optimal.

• Conversely, if the stationary policy µ is optimal,

∗we have J = Jµ, so

∗ ∗J = TµJ .

∗Combining this with Bellman’s Eq. (J = TJ∗),
∗ ∗we obtain TJ = TµJ . Q.E.D.

24

{ ()}

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

