APPROXIMATE DYNAMIC PROGRAMMING
A SERIES OF LECTURES GIVEN AT

TSINGHUA UNIVERSITY
JUNE 2014

DIMITRI P. BERTSEKAS

Based on the books:

(1) “Neuro-Dynamic Programming,” by DPB
and J. N. Tsitsiklis, Athena Scientific,
1996

(2) “Dynamic Programming and Optimal
Control, Vol. II: Approximate Dynamic
Programming,” by DPB, Athena Sci-

entific, 2012

(3) “Abstract Dynamic Programming,” by
DPB, Athena Scientific, 2013

http://www.athenasc.com

For a fuller set of slides, see

http://web.mit.edu/dimitrib/www /publ.html

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

1

http://web.mit.edu/dimitrib/www/publ.html
http://www.athenasc.com

APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE I

e Our subject:

— Large-scale DP based on approximations and
in part on simulation.

— This has been a research area of great inter-
est for the last 25 years known under various
names (e.g., reinforcement learning, neuro-
dynamic programming)

— Emerged through an enormously fruitful cross-
fertilization of ideas from artificial intelligence
and optimization/control theory

— Deals with control of dynamic systems under
uncertainty, but applies more broadly (e.g.,
discrete deterministic optimization)

— A vast range of applications in control the-
ory, operations research, artificial intelligence,
and beyond ...

— The subject is broad with rich variety of
theory /math, algorithms, and applications.
Our focus will be mostly on algorithms ...
less on theory and modeling

2

APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE II

e Our aim:

— A state-of-the-art account of some of the ma-
jor topics at a graduate level

— Show how to use approximation and simula-
tion to address the dual curses of DP: di-
mensionality and modeling

e Our 6-lecture plan:

— Two lectures on exact DP with emphasis on
infinite horizon problems and issues of large-
scale computational methods

— One lecture on general issues of approxima-
tion and simulation for large-scale problems

— One lecture on approximate policy iteration
based on temporal differences (TD) /projected
equations/Galerkin approximation

— One lecture on aggregation methods

— One lecture on)-learning, and other meth-
ods, such as approximation in policy space

APPROXIMATE DYNAMIC PROGRAMMING
LECTURE 1

LECTURE OUTLINE

e Introduction to DP and approximate DP

e Finite horizon problems

e The DP algorithm for finite horizon problems
e Infinite horizon problems

e Basic theory of discounted infinite horizon prob-
lems

DP AS AN OPTIMIZATION METHODOLOGY

e Generic optimization problem:

min g(u)

where u is the optimization/decision variable, g(u)
is the cost function, and U is the constraint set
e (ategories of problems:

— Discrete (U is finite) or continuous

— Linear (g is linear and U is polyhedral) or
nonlinear

— Stochastic or deterministic: In stochastic prob-
lems the cost involves a stochastic parameter
w, which is averaged, i.e., it has the form

g(u) — Ew{G(uv w)}

where w is a random parameter.

e DP deals with multistage stochastic problems
— Information about w is revealed in stages

— Decisions are also made in stages and make
use of the available information

— Its methodology is “different”

BASIC STRUCTURE OF STOCHASTIC DP

e Discrete-time system

a:kH:fk(xk,uk,wk), k:O,l,...,N—l

— k: Discrete time

— x1: State; summarizes past information that
is relevant for future optimization

— ug: Control; decision to be selected at time
k from a given set

— wg: Random parameter (also called “distur-
bance” or “noise” depending on the context)

— N: Horizon or number of times control is
applied

e (ost function that is additive over time
N—1

E {QN(CUN) + > gk(xk,uk,wk)}
k=0

e Alternative system description: P(xg+1 | Tk, k)

Tip+1 = wg with P(wk ‘ a:k,uk) = P(.Cbk_H ’ xk,uk)

6

INVENTORY CONTROL EXAMPLE

Wi l Demand at Period k

Stock at Period k Inventory Stock at Period k+ 1
Xk — —l
SyStem Xk+1:Xk +Uk'Wk

l T Stock Ordered at

CostofPeriod k 4 Period k
-—— Yk
Cu, +r (X, + U.-w,)

e Discrete-time system

Tr+1 = [fr(Tg, Uk, W) = Tp + up — Wk

e (ost function that is additive over time

E {gN(xN) + z_: gk (T, U, wk)}

k=0

:E{Z(cuk+r(afk+uk—wk))}

k=0

ADDITIONAL ASSUMPTIONS

e Probability distribution of wi does not depend
on past values wg_1,...,wo, but may depend on
rr and ug

— Otherwise past values of w, x, or u would be
useful for tuture optimization

e The constraint set from which wu; is chosen at
time k£ depends at most on xj, not on prior x or
U

e Optimization over policies (also called feedback
control laws): These are rules/functions

uk:,uk(a:k), kZO,...,N—l

that map state/inventory to control/order (closed-
loop optimization, use of feedback)

e MAJOR DISTINCTION: We minimize over se-
quences of functions (mapping inventory to order)

{:uoalula Lo 7/’LN—1}

NOT over sequences of controls/orders

{uo,u1,...,un—1}

8

GENERIC FINITE-HORIZON PROBLEM

e System xpi1 = fr(vp,uk,wr), k=0,..., N—1
e Control contraints ug € Ug(xk)
e Probability distribution Pg(- | xx, ur) of wg

e DPolicies m = {uo,...,un—1}, where pui maps
states xj into controls ur = pg(xy) and is such
that ur(xr) € Uk(xx) for all xy

e [ixpected cost of m starting at g is
N-1
Jr(20) = E {QN(xN) + > gk(xkaﬂk(xk)awk)}

k=0

e Optimal cost function

J* (xo) — min JW(ZE())

e Optimal policy 7* satisfies
Jr= (20) = J*(20)

When produced by DP, 7* is independent of xy.

PRINCIPLE OF OPTIMALITY

o Let m* = {ug,ui,...,w_1} be optimal policy

e Consider the “tail subproblem” whereby we are
at . at time k and wish to minimize the “cost-
to-go” from time k to time N

l=k

E {gN(acN) + Z_ ge (xe, pe(ze), we)}

and the “tail policy” {u}, TR N1}

X Tail Subproblem
k

k N Time

e Principle of optimality: The tail policy is opti-
mal for the tail subproblem (optimization of the
future does not depend on what we did in the past)

e DP solves ALL the tail subroblems

e At the generic step, it solves ALL tail subprob-
lems of a given time length, using the solution of
the tail subproblems of shorter time length

10

DP ALGORITHM

e Computes for all £ and states x:

Ji(xk): opt. cost of tail problem starting at g

e Initial condition:

In(zn) = gn(2N)
Go backwards, k=N —1,...,0, using

J — I
k() L oo £{gk(:€k, Uk, W)

+ J1 (S (@, uk, wi)) }

e 'To solve tail subproblem at time k£ minimize

kth-stage cost + Opt. cost of next tail problem

starting from next state at time k + 1

e Then Jy(xp), generated at the last step, is equal
to the optimal cost J*(xzg). Also, the policy

m = s i)

where p (x5) minimizes in the right side above for
each z; and k, is optimal

e Proof by induction

11

PRACTICAL DIFFICULTIES OF DP

e The curse of dimensionality

— Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

— Quick explosion of the number of states in
combinatorial problems
e The curse of modeling
— Sometimes a simulator of the system is easier
to construct than a model
e There may be real-time solution constraints

— A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

— The problem data may change as the system
is controlled — need for on-line replanning

e All of the above are motivations for approxi-
mation and simulation

12

A MAJOR IDEA: COST APPROXIMATION

e Use a policy computed from the DP equation
where the optimal cost-to-go function Jy41 is re-
placed by an approximation Jgy1.

e Apply i, (xr), which attains the minimum in

min E{gk(a:k, Uk, wk)‘|—jk—|—1 (fk(xka Uk, wk))}
up €U ()

e Some approaches:

(a) Problem Approximation: Use J, derived from
a related but simpler problem

(b) Parametric Cost-to-Go Approximation: Use
as J, a function of a suitable parametric
form, whose parameters are tuned by some
heuristic or systematic scheme (we will mostly
focus on this)

— This is a major portion of Reinforcement
Learning/Neuro-Dynamic Programming

(¢) Rollout Approach: Use as Jj the cost of
some suboptimal policy, which is calculated
either analytically or by simulation

13

ROLLOUT ALGORITHMS

e At each k and state x, use the control ()
that minimizes in

min E{gk(xk,uk,wk)+jk+1 (fk(a:k,uk,wk))},
ur €U (xk)
where jk+1 is the cost-to-go of some heuristic pol-
icy (called the base policy).

e (Cost improvement property: The rollout algo-
rithm achieves no worse (and usually much better)
cost than the base policy starting from the same
state.

e Main difficulty: Calculating Jy.1(z) may be
computationally intensive if the cost-to-go of the
base policy cannot be analytically calculated.

— May involve Monte Carlo simulation if the
problem is stochastic.

— Things improve in the deterministic case (an
important application is discrete optimiza-
tion).

— Connection w/ Model Predictive Control (MPC).

14

INFINITE HORIZON PROBLEMS

e Same as the basic problem, but:
— The number of stages is infinite.

— The system is stationary.

e 'Total cost problems: Minimize

Jrx(z0) = lim i) {Z@kg(xkaﬂk(xk)awk)}

N —o0 W
k=0,1,... k=0

— Discounted problems (a < 1, bounded g)

— Stochastic shortest path problems (a = 1,
finite-state system with a termination state)
- we will discuss sparringly

— Discounted and undiscounted problems with
unbounded cost per stage - we will not cover

e Average cost problems - we will not cover

e Infinite horizon characteristics:

— Challenging analysis, elegance of solutions
and algorithms

— Stationary policies m = {u, u,...} and sta-
tionary forms of DP play a special role

15

DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system

Lk+1 :f(a:k,uk,wk), k’ZO,l,...

e Cost of a policy m = {uo, 1, ...}

Jﬂ-(ZUO) — lim E {Z oz’fg xk,uk(xk),wk)}

N — o0 W
k=0,1,... k=0

with a < 1, and ¢ is bounded [for some M, we
have |g(x,u,w)| < M for all (z,u,w)]

e Optimal cost function: J*(x) = ming; J(x)

e Boundedness of g guarantees that all costs are
well-defined and bounded: |Jx(z)| < AL

e All spaces are arbitrary - only boundedness of
g is important (there are math fine points, e.g.
measurability, but they don’t matter in practice)

e Important special case: All underlying spaces
finite; a (finite spaces) Markovian Decision Prob-

lem or MDP

e All algorithms ultimately work with a finite
spaces MDP approximating the original problem

16

SHORTHAND NOTATION FOR DP MAPPINGS

e For any function J of z, denote

(TJ)(x) = min E{g(a:,u,w)+aJ(f(x,u,w))},‘v’x

uwelU(x) w

e T'J is the optimal cost function for the one-
stage problem with stage cost g and terminal cost
function aJ.

e [’ operates on bounded functions of x to pro-
duce other bounded functions of x

e For any stationary policy p, denote

(1,)(@) = B {g(w,n(@),w) +ad (f (@, u(@),w) } Ve

e The critical structure of the problem is cap-
tured in 7" and T,

e The entire theory of discounted problems can
be developed in shorthand using 7" and T},

e True for many other DP problems.

e 7'and T}, provide a powerful unitying framework
for DP. This is the essence of the book “Abstract
Dynamic Programming”

17

FINITE-HORIZON COST EXPRESSIONS

e Consider an N-stage policy 73 = {uo, 1, -, 4n—1}
with a terminal cost J:

Jox(20) = E {&Nj(xk) + z_: aﬁg(xe,ue(we),we)}

(=0
— K {g(xo,uo(iEO)awO) +adpy (331)}
— (Tuo Jw{V)(xO)

where ﬂ-]]_V — {MlmuQa s ,,UN—l}

e By induction we have

Jon () = (Tuon SRR TPV J)(z), Vo

0
e For a stationary policy u the N-stage cost func-
tion (with terminal cost J) is

Ty =TT

where T} is the N-fold composition of T,

e Similarly the optimal NN-stage cost function
(with terminal cost J) is TN J

o TNJ=T(T'N-1]J) is just the DP algorithm

18

“SHORTHAND” THEORY - A SUMMARY

e Infinite horizon cost function expressions [with

Jo(z) = 0]

Ta@) = Jim (Tup Ty -+ Ty J0)(@), Jule) = Tim (T Jo) ()
e Bellman’s equation: J* =T1TJ*, J, =1,J,

e Optimality condition:

p: optimal <==> T, J*=TJ*

e Value iteration: For any (bounded) J

J*(x) = lim (TkJ)(x), Vo

k— 00

e Policy iteration: Given uk,

— Policy evaluation: Find J,» by solving

Jp=T

M MkJMk:

— Policy improvement: Find pf+1 such that

T/Lk+1 J/Lk’ — T!]Mk‘,

19

TWO KEY PROPERTIES

e Monotonicity property: For any J and J’ such
that J(x) < J/(x) for all x, and any u

(TJ)(x) < (TJ")(x), V x,
(Tpd)(z) < (Tpd')(z), V.

e Constant Shift property: For any J, any scalar
r, and any u

(T(J +re))(z) = (TJT)(z) + ar, Vo,

(L,(J + 7)) (@) = (T,J)(@) +ar, Va
where e is the unit function |e(z) = 1].

e Monotonicity is present in all DP models (undis-
counted, etc)

e (Constant shift is special to discounted models

e Discounted problems have another property
of major importance: 7' and 7}, are contraction
mappings (we will show this later)

20

CONVERGENCE OF VALUE ITERATION

e For all bounded J,
J*(x) = lim (TkJ)(x), for all x
k— o0

Proof: For simplicity we give the proof for J = 0.
For any initial state xo, and policy 7 = {uo, p1, - ..},

Jr(x0) = E QY alg(we, pe(xe), we) ¢
\ /=0 y

fk_l N

= B« Z(xeg(xg,,ug(xe),wg) >

\ £=0 y

+FE {Z O/g(xg, Nﬁ(me)a wﬁ) }
=k
The tail portion satisfies
E {Z Oéeg(afg,,ug(l‘g), wﬁ) } < fé_ o’
=k

where M > |g(x,u,w)|. Take min over 7w of both
sides, then lim as k — oco. Q.E.D.

BELLMAN’S EQUATION

e The optimal cost function J* is a solution of
Bellman’s equation, J* =T'J*, i.e., for all z,

J*(x) = min g(x,u,w) +aJ* f(z,u,w)
ucU (x) w

Proof: For all z and k,

ok M ok M
< k < J*
T < (T*Jo)(x) < J (3?)+1_a

J* (ZU) _

Y

where Jo(x) =0 and M > |g(x,u,w)|. Applying
T to this relation, and using Monotonicity and
Constant Shift,

ak+1 M

1 — «

(TJ*)(x) — < (T*+1Jo)(x)

ak+1 M

1l — «

<(TJ*)(x) +

Taking the limit as k& — oo and using the fact

lim (Tk+1.Jp)(z) = J*(x)

k— o0

we obtain J* =TJ*. Q.E.D.

22

THE CONTRACTION PROPERTY

e (ontraction property: For any bounded func-
tions J and J’, and any pu,

mgx’(TJ)(x) —(TJ")(z)| < amgx’J(a:) — J/'(x)

Y

max|(T,J)(x)— (TpJ")(z)| < amax|J(z)—J' (z)|.
Proof: Denote ¢ = maxges|J(x) — J'(x)|. Then
J(x)—c< J(x) < J(x)+c, vV x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ)(z)—ac < (TJ)(x) < (TJ)(x)+ac, V&
Hence
(TT)(z) — (TJ")(z)| < ac, vV x.

Q.E.D.

e Note: This implies that J* is the unique solu-
tion of J* = T'J*, and J, is the unique solution

of J*x =T J* 23

NEC. AND SUFFICIENT OPT. CONDITION

e A stationary policy p is optimal if and only if
u(x) attains the minimum in Bellman’s equation
for each z; i.e.,

TJ* =T, J*,

or, equivalently, for all z,

u(z) € arg uénul&) E Lg(z,u,w) + a*(f(z,u,w))}

Proof: It T'J* =T, J*, then using Bellman’s equa-
tion (J* = TJ*), we have

J* =T, J*,

so by uniqueness of the fixed point of 7},, we obtain
J* = J,; 1.e., p 1s optimal.

e Conversely, if the stationary policy u is optimal,
we have J* = J,, so

J* =T, J*.

Combining this with Bellman’s Eq. (J* = TJ*),
we obtain T'J* =T, J*. Q.E.D.

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

