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Monte Carlo Linear Algebra 

An emerging field combining Monte Carlo simulation and algorithmic linear 
algebra 

Plays a central role in approximate DP (policy iteration, projected equation 
and aggregation methods) 

Advantage of Monte Carlo 

Can be used to approximate sums of huge number of terms such as 
high-dimensional inner products 

A very broad scope of applications 

Linear systems of equations 

Least squares/regression problems 

Eigenvalue problems 

Linear and quadratic programming problems 

Linear variational inequalities 

Other quasi-linear structures 
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Monte Carlo Estimation Approach for Linear Systems 

Use simulation to compute Ck → C and dk → d 

Estimate the solution by matrix inversion C−1 
k dk ≈ C−1d (assuming C is 

invertible) 

Alternatively, solve Ck x = dk iteratively 

Why simulation? 

C may be of small dimension, but may be defined in terms of matrix-vector 
products of huge dimension 

What are the main issues? 

Efficient simulation design that matches the structure of C and d 

Efficient and reliable algorithm design 

What to do when C is singular or nearly singular 

We focus on solution of Cx = d
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Low-Dimensional Approximation 

Start from a high-dimensional equation y = Ay + b

Approximate its solution within a subspace S = {Φx | x ∈ �s}
Columns of Φ are basis functions 

Equation approximation approach 

Approximate solution y ∗ with the solution Φx ∗ of an equation defined on S

Important example: Projection/Galerkin approximation 

Φx = Π(AΦx + b)

S: Subspace spanned by basis functions

0

Galerkin approximation of equation
y∗ = Ay∗ + b

AΦx∗ + b

Φx∗ = Π(AΦx∗ + b)
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Matrix Form of Projected Equation 

Let Π be projection with respect to a weighted Euclidean norm lylΞ = 
√ 

y 'Ξy 

The Galerkin solution is obtained from the orthogonality condition 

Φx ∗ − (AΦx ∗ + b) ⊥ (Columns of Φ) 

or 
Cx = d 

where 
C = Φ'Ξ(I − A)Φ, d = Φ'Ξb 

Motivation for simulation 

If y is high-dimensional, C and d involve high-dimensional matrix-vector 
operations 
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Another Important Example: Aggregation 

Let D and Φ be matrices whose rows are probability distributions. 

Aggregation equation 

By forming convex combinations of variables (i.e., y ≈ Φx) and equations 
(using D), we obtain an aggregate form of the fixed point problem y = Ay + b: 

x = D(AΦx + b) 

or Cx = d with 
C = DAΦ, d = Db 

Connection with projection/Galerkin approximation 

The aggregation equation yields 

Φx = ΦD(AΦx + b) 

ΦD is an oblique projection in some of the most interesting types of 
aggregation [if DΦ = I so that (ΦD)2 = ΦD]. 
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Another Example: Large-Scale Regression 

Weighted least squares problem 

Consider 
min 
y∈in 

lWy − hl2 
Ξ, 

where W and h are given, l · lΞ is a weighted Euclidean norm, and y is 
high-dimensional. 

Equivalent linear system Cx d 

C = Φ ' W ' ΞW Φ, d = Φ ' W ' Ξh 

=

We approximate y within the subspace S = {Φx | x ∈ <s} , to obtain

min
x∈<s

‖W Φx − h‖2
Ξ.
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Key Idea for Simulation 

Critical Problem 

Compute sums
 n 

i=1 ai for very large n (or n = ∞) 

Convert Sum to an Expected Value 

Introduce a sampling distribution ξ and write 

nt 

i=1 

ai = 
nt 

i=1 

ξi

 
ai 

ξi

 
= Eξ{ ̂a} 

where the random variable â has distribution 

P
 

â = 
ai 

ξi

 
= ξi , i = 1, . . . , n 

We “invent" ξ to convert a “deterministic" problem to a “stochastic"
 
problem that can be solved by simulation.
 
Complexity advantage: Running time is independent of the number n of 
terms in the sum, only the distribution of â. 
Importance sampling idea: Use a sampling distribution that matches the 
problem for efficiency (e.g., make the variance of â small) . 
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Row and Column Sampling for System Cx d 

Row Sampling According to ξ
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Column Sampling

Row sampling: Generate sequence {i0, i1, . . .} according to ξ (the 
diagonal of Ξ), i.e., relative frequency of each row i is ξi

Column sampling: Generate sequence
 
(i0, j0), (i1, j1), . . .

 
according to 

some transition probability matrix P with 

pij > 0 if aij = 0,

i.e., for each i , the relative frequency of (i, j) is pij 

Row sampling may be done using a Markov chain with transition matrix 
Q (unrelated to P) 
Row sampling may also be done without a Markov chain - just sample 
rows according to some known distribution ξ (e.g., a uniform) 

 

=

Row Sampling According to ξ

According to P
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Simulation Formulas for Matrix Form of Projected Equation 

Approximation of C and d by simulation: 

k ' t1 ait jtC = Φ ' Ξ(I − A)Φ ∼ Ck = φ(it ) φ(it ) − φ(jt ) ,
k + 1 pit jtt=0 

t 
d = Φ ' Ξb ∼ dk = 

1 k

φ(it )bitk + 1 
t=0 

We have by law of large numbers Ck → C, dk → d . 

Equation approximation: Solve the equation Ck x = dk in place of 
Cx = d . 

Algorithms 

Matrix inversion approach: x ∗ ≈ C−1 
k dk (if Ck is invertible for large k ) 

Iterative approach: xk+1 = xk − γGk (Ck xk − dk ) 

( )



Simulation error

λ = 0

λ

Simulation error

Solution of

Subspace spanned by basis functions

Φx = ΠT (λ)(Φx)

y∗

Πy∗

Solution of multistep projected equation

Simulation error Bias= 1

-
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Multistep Methods TD(λ)-Type 

Instead of solving (approximately) the equation y = T (y) = Ay + b, consider 
the multistep equivalent 

y = T (λ)(y) 

where for λ ∈ [0, 1) 

T (λ) = (1 − λ) 
∞t 

£=0 

λ£T £+1 

Special multistep sampling methods 
Bias-variance tradeoff 



Set Ŝ

Subspace spanned by basis functions

ΦxΠT (Φx∗) = Φx∗

T (Φx∗)
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Constrained Projected Equations 

Consider 
Φx = ΠT (Φx) = Π(AΦx + b) 

where Π is the projection operation onto a closed convex subset S of the 
subspace S (w/ respect to weighted norm l · lΞ; Ξ: positive definite). 

From the properties of projection, 
Φx ∗ − T (Φx ∗ )

 ' ˆΞ(y − Φx ∗) ≥ 0, ∀ y ∈ S

ˆ

This is a linear variational inequality: Find x ∗ such that
 

f (Φx ∗ )'   (y − Φx ∗) ≥ 0, ∀ y ∈ Ŝ,
 

where f (y) = Ξ
 
y − T (y)

 
= Ξ
 
y − (Ay + b)

 
. 
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Equivalence Conclusion 

Two equivalent problems 

The projected equation 
Φx = ΠT (Φx) 

where Π is projection with respect to l · lΞ on convex set Ŝ ⊂ S 

The special-form VI 

f (Φx ∗ ) ' ΞΦ(x − x ∗ ) ≥ 0, ∀ x ∈ X , 

where 
f (y) = Ξ y − T (y) , X = {x | Φx ∈ Ŝ} 

Ŝ = n: VI <==> f (Φx ∗ ) = Ξ Φx ∗ − T (Φx ∗ ) = 0 (linear equation) 

Ŝ = subspace: VI <==> f (Φx ∗ ) ⊥ Ŝ (e.g., projected linear equation) 

f (y) the gradient of a quadratic, Ŝ: polyhedral (e.g., approx. LP and QP) 

Linear VI case (e.g., cooperative and zero-sum games with 
approximation) 

( )

( )
<

Special linear cases: T (y) = Ay + b
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Matrix Inversion Method 

x ∗ = C−1d 

Generic Linear Iterative Method 

xk+1 = xk − γG(Cxk − d) 

where: 

G is a scaling matrix, γ > 0 is a stepsize 

Eigenvalues of I − γGC within the unit circle (for convergence) 

Special cases: 

Projection/Richardson’s method: C positive semidefinite, G positive 
definite symmetric 

Proximal method (quadratic regularization) 

Splitting/Gauss-Seidel method 

Deterministic Solution Methods - Invertible Case of Cx = d
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Given sequences Ck → C and dk → d 

Matrix Inversion Method 

xk = C−1 
k dk 

Iterative Method 

xk+1 = xk − γGk (Ck xk − dk ) 

where: 

Gk is a scaling matrix with Gk → G 

γ > 0 is a stepsize 

xk → x ∗ if and only if the deterministic version is convergent 

Simulation-Based Solution Methods - Invertible Case
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Given sequences Ck → C and dk → d . Matrix inversion method does not 
apply 

Iterative Method 

xk+1 = xk − γGk (Ck xk − dk ) 

Need not converge to a solution, even if the deterministic version does 

Questions: 

Under what conditions is the stochastic method convergent? 

How to modify the method to restore convergence? 

Solution Methods - Singular Case (Assuming a Solution Exists)
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The theoretical view 

If C is nearly singular, we are in the nonsingular case 

The practical view 

If C is nearly singular, we are essentially in the singular case (unless the 
simulation is extremely accurate) 

The eigenvalues of the iteration 

xk+1 = xk − γGk (Ck xk − dk ) 

get in and out of the unit circle for a long time (until the “size" of the simulation 
noise becomes comparable to the “stability margin" of the iteration) 

Think of roundoff error affecting the solution of ill-conditioned systems 
(simulation noise is far worse) 

Simulation-Based Solution Methods - Nearly Singular Case
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Generic Linear Iterative Method 

xk+1 = xk − γG(Cxk − d) 

Standard Convergence Result 

Let C be singular and denote by N(C) the nullspace of C. Then: 
{xk } is convergent (for all x0 and sufficiently small γ) to a solution of Cx = d if 
and only if: 

(a) Each eigenvalue of GC either has a positive real part or is equal to 0. 

(b) The dimension of N(GC) is equal to the algebraic multiplicity of the 
eigenvalue 0 of GC. 

(c) N(C) = N(GC). 

Deterministic Iterative Method - Convergence Analysis

Assume that C is invertible or singular (but Cx = d has a solution)
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Proof Based on Nullspace Decomposition for Singular Systems 

For any solution x ∗, rewrite the iteration as 

xk+1 − x ∗ = (I − γGC)(xk − x ∗ ) 

Linarly transform the iteration 

Introduce a similarity transformation involving N(C) and N(C)⊥ 

Let U and V be orthonormal bases of N(C) and N(C)⊥:   
U 'GCU U 'GCV 

[U V ] ' (I − γGC)[U V ] = I − γ 'V GCU V 'GCV  
0 U 'GCV 

= I − γ '0 V GCV  
≡ I 

0 
−γN 

I − γH , 

where H has eigenvalues with positive real parts. Hence for some γ > 0, 

ρ(I − γH) < 1, 

so I − γH is a contraction ... • 
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Nullspace Decomposition of Deterministic Iteration 

Ŝ 0

)⊥ x∗
⊥ x∗ + V zk

Sequence {xk}

Solution Set Sequence

k x∗ + Uyk

k x∗ + Uy∗

N(C) N

) N(C)⊥

x∗ + N(C) N

Nullspace Component Sequence Othogonal Component
Nullspace Component Sequence Othogonal Component

Nullspace Component Sequence Othogonal Component
Nullspace Component Sequence Orthogonal Component

Nullspace Component Sequence Orthogonal Component Full Iterate

Figure: Iteration decomposition into components on N(C) and N(C)⊥ . 

xk = x ∗ + Uyk + Vzk 

Nullspace component: yk+1 = yk − γNzk 

Orthogonal component: zk+1 = zk − γHzk CONTRACTIVE 
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Stochastic Iterative Method May Diverge 

The stochastic iteration 

xk+1 = xk − γGk (Ck xk − dk ) 

approaches the deterministic iteration 

xk+1 = xk − γG(Cxk − d), where ρ(I − γGC) ≤ 1. 

However, since 
ρ(I − γGk Ck ) → 1 

ρ(I − γGk Ck ) may cross above 1 too frequently, and we can have divergence. 

Difficulty is that the orthogonal component is now coupled to the nullspace 
component with simulation noise 
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Divergence of the Stochastic/Singular Iteration 

Ŝ 0

)⊥ x∗

⊥ x∗ + V zk

Sequence {xk}

Solution Set Sequence

k x∗ + Uyk

N(C) N

) N(C)⊥

x∗ + N(C) N

Nullspace Component Sequence Othogonal Component
Nullspace Component Sequence Othogonal Component

Nullspace Component Sequence Othogonal Component
Nullspace Component Sequence Orthogonal Component

Nullspace Component Sequence Orthogonal Component Full Iterate

Figure: NOISE LEAKAGE FROM N(C) to N(C)⊥ 

xk = x ∗ + Uyk + Vzk 

Nullspace component: yk+1 = yk − γNzk + Noise(yk , zk ) 

Orthogonal component: zk+1 = zk − γHzk + Noise(yk , zk ) 
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Divergence Example for a Singular Problem 

2 × 2 Example 

Nullspace component yk = xk (1) diverges: 

kk 

t=1 

(1 + et ) = O(e 
√ 

k ) → ∞ 

Orthogonal component zk = xk (2) diverges: 

xk+1(2) = 1/2xk (2) + ek 

kk 

t=1 

(1 + et ), 

where 

ek 

kk 

t=1 

(1 + et ) = O

 
e 
√ 

k 

√ 
k

 
→ ∞. 

Let the noise be {ek}: MC averages with mean 0 so ek → 0, and let

xk+1 =

[
1 + ek 0

ek 1/2

]
xk
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What Happens in Nearly Singular Problems? 

“Divergence" until Noise << “Stability Margin" of the iteration 

Compare with roundoff error problems in inversion of nearly singular 
matrices 

A Simple Example 

Consider the inversion of a scalar c > 0, with simulation error η. The 
absolute and relative errors are 

E = 
1 

c + η 
− 

1 
c 
, Er = 

E 

∂η

   
η=0 

η = − 
η 
c2 , Er ≈ − 

η 
c 
. 

For the estimate 1 
c+η to be reliable, it is required that 

|η| << |c|. 
Number of i.i.d. samples needed: k » 1/c2 . 

1/c
.

By a Taylor expansion around η = 0:

E ≈
∂
(
1/(c + η)

)
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Nullspace Consistent Iterations 

Nullspace Consistency and Convergence of Residual 

If N(Gk Ck ) ≡ N(C), we say that the iteration is nullspace-consistent. 

Nullspace consistent iteration generates convergent residuals 
(Cxk − d → 0), iff the deterministic iteration converges. 

Proof Outline: 

xk = x ∗ + Uyk + Vzk 

Nullspace component: yk+1 = yk − γNzk + Noise(yk , zk ) 

Orthogonal component: zk+1 = zk − γHzk + Noise(zk ) DECOUPLED 

LEAKAGE FROM N(C) IS ANIHILATED by V so 

Cxk − d = CVzk → 0 

• 



Motivating Framework: Low-Dimensional Approximation Sampling Issues Solution Methods and Singularity Issues 

Interesting Special Cases 

Proximal/Quadratic Regularization Method 

xk+1 = xk − (C ' k Ck + βI)−1C ' k (Ck xk − dk ) 

Can diverge even in the nullspace consistent case. 

In the nullspace consistent case, under favorable conditions xk → some 
solution x ∗ . 

In these cases the nullspace component yk stays constant. 

Approximate DP (projected equation and aggregation) 

The estimates often take the form 

Ck = Φ ' Mk Φ, dk = Φ ' hk , 

where Mk → M for some positive definite M. 

If Φ has dependent columns, the matrix C = Φ 'MΦ is singular. 

The iteration using such Ck and dk is nullspace consistent. 

In typical methods (e.g., LSPE) xk → some solution x ∗ . 
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Stabilization of Divergent Iterations 

A Stabilization Scheme 

Shifting the eigenvalues of I − γGk Ck by −δk : 

xk+1 = (1 − δk )xk − γGk (Ck xk − dk ) . 

Convergence of Stabilized Iteration 

Assume that the eigenvalues are shifted slower than the convergence rate of 
the simulation: 

(Ck − C, dk − d , Gk − G)/δk → 0, 
∞t 

k=0 

δk = ∞ 

Then the stabilized iteration generates xk → some x ∗ iff the deterministic 
iteration without δk does. 

Stabilization is interesting even in the nonsingular case 

It provides a form of “regularization" 
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Stabilization of the Earlier Divergent Example 
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Thank You! 
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