6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

- Review of Q-factors and Bellman equations for Q-factors
- VI and PI for Q-factors
- Q-learning Combination of VI and sampling
- Q-learning and cost function approximation
- Approximation in policy space

DISCOUNTED MDP

- System: Controlled Markov chain with states i = 1, ..., n and finite set of controls $u \in U(i)$
- Transition probabilities: $p_{ij}(u)$

• Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$ starting at state i:

$$J_{\pi}(i) = \lim_{N \to \infty} E\left\{ \sum_{k=0}^{N} \alpha^{k} g(i_{k}, \mu_{k}(i_{k}), i_{k+1}) \mid i = i_{0} \right\}$$

with $\alpha \in [0,1)$

• Shorthand notation for DP mappings

$$(TJ)(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J(j)), \quad i = 1, \dots, n,$$

$$(T_{\mu}J)(i) = \sum_{j=1}^{n} p_{ij}(\mu(i))(g(i,\mu(i),j) + \alpha J(j)), \quad i = 1,\dots, n$$

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any $J \in \Re^n$

$$J^*(i) = \lim_{k \to \infty} (T^k J)(i), \quad \forall i = 1, \dots, n$$

- Policy iteration: Given μ^k
 - Policy evaluation: Find J_{μ^k} by solving

$$J_{\mu^k}(i) = \sum_{j=1}^n p_{ij} (\mu^k(i)) (g(i, \mu^k(i), j) + \alpha J_{\mu^k}(j)), \quad i = 1, \dots, n$$

or
$$J_{\mu^k} = T_{\mu^k} J_{\mu^k}$$

- Policy improvement: Let μ^{k+1} be such that

$$\mu^{k+1}(i) \in \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J_{\mu^k}(j)), \quad \forall i$$

or
$$T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$$

- We discussed approximate versions of VI and PI using projection and aggregation
- We focused so far on cost functions and approximation. We now consider Q-factors.

BELLMAN EQUATIONS FOR Q-FACTORS

• The optimal Q-factors are defined by

$$Q^*(i, u) = \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J^*(j)), \quad \forall \ (i, u)$$

• Since $J^* = TJ^*$, we have $J^*(i) = \min_{u \in U(i)} Q^*(i, u)$ so the optimal Q-factors solve the equation

$$Q^*(i, u) = \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \min_{u' \in U(j)} Q^*(j, u') \right)$$

• Equivalently $Q^* = FQ^*$, where

$$(FQ)(i,u) = \sum_{j=1}^{n} p_{ij}(u) \left(g(i,u,j) + \alpha \min_{u' \in U(j)} Q(j,u') \right)$$

- This is Bellman's Eq. for a system whose states are the pairs (i, u)
- Similar mapping F_{μ} and Bellman equation for a policy μ : $Q_{\mu} = F_{\mu}Q_{\mu}$

SUMMARY OF BELLMAN EQS FOR Q-FACTORS

• Optimal Q-factors: For all (i, u)

$$Q^*(i, u) = \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \min_{u' \in U(j)} Q^*(j, u') \right)$$

Equivalently $Q^* = FQ^*$, where

$$(FQ)(i,u) = \sum_{j=1}^{n} p_{ij}(u) \left(g(i,u,j) + \alpha \min_{u' \in U(j)} Q(j,u') \right)$$

• Q-factors of a policy μ : For all (i, u)

$$Q_{\mu}(i, u) = \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha Q_{\mu}(j, \mu(j)) \right)$$

Equivalently $Q_{\mu} = F_{\mu}Q_{\mu}$, where

$$(F_{\mu}Q)(i,u) = \sum_{j=1}^{n} p_{ij}(u) \left(g(i,u,j) + \alpha Q(j,\mu(j))\right)$$

WHAT IS GOOD AND BAD ABOUT Q-FACTORS

- All the exact theory and algorithms for costs applies to Q-factors
 - Bellman's equations, contractions, optimality conditions, convergence of VI and PI
- All the approximate theory and algorithms for costs applies to Q-factors
 - Projected equations, sampling and exploration issues, oscillations, aggregation
- A MODEL-FREE (on-line) controller implementation
 - Once we calculate $Q^*(i, u)$ for all (i, u),

$$\mu^*(i) = \arg\min_{u \in U(i)} Q^*(i, u), \qquad \forall i$$

- Similarly, once we calculate a parametric approximation $\tilde{Q}(i, u, r)$ for all (i, u),

$$\tilde{\mu}(i) = \arg\min_{u \in U(i)} \tilde{Q}(i, u, r), \quad \forall i$$

• The main bad thing: Greater dimension and more storage! [Can be used for large-scale problems only through aggregation, or other cost function approximation.]

Q-LEARNING

- In addition to the approximate PI methods adapted for Q-factors, there is an important additional algorithm:
 - Q-learning, which can be viewed as a sampled form of VI
- Q-learning algorithm (in its classical form):
 - Sampling: Select sequence of pairs (i_k, u_k) (use any probabilistic mechanism for this, but all pairs (i, u) are chosen infinitely often.)
 - Iteration: For each k, select j_k according to $p_{i_k j}(u_k)$. Update just $Q(i_k, u_k)$:

$$Q_{k+1}(i_k, u_k) = (1 - \gamma_k) Q_k(i_k, u_k) + \gamma_k \left(g(i_k, u_k, j_k) + \alpha \min_{u' \in U(j_k)} Q_k(j_k, u') \right)$$

Leave unchanged all other Q-factors: $Q_{k+1}(i, u) = Q_k(i, u)$ for all $(i, u) \neq (i_k, u_k)$.

- Stepsize conditions: γ_k must converge to 0 at proper rate (e.g., like 1/k).

NOTES AND QUESTIONS ABOUT Q-LEARNING

$$Q_{k+1}(i_k, u_k) = (1 - \gamma_k) Q_k(i_k, u_k) + \gamma_k \left(g(i_k, u_k, j_k) + \alpha \min_{u' \in U(j_k)} Q_k(j_k, u') \right)$$

- Model free implementation. We just need a simulator that given (i, u) produces next state j and cost g(i, u, j)
- Operates on only one state-control pair at a time. Convenient for simulation, no restrictions on sampling method.
- Aims to find the (exactly) optimal Q-factors.
- Why does it converge to Q^* ?
- Why can't I use a similar algorithm for optimal costs?
- Important mathematical (fine) point: In the Q-factor version of Bellman's equation the order of expectation and minimization is reversed relative to the cost version of Bellman's equation:

$$J^*(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J^*(j))$$

CONVERGENCE ASPECTS OF Q-LEARNING

- Q-learning can be shown to converge to true/exact Q-factors (under mild assumptions).
- Proof is sophisticated, based on theories of stochastic approximation and asynchronous algorithms.
- Uses the fact that the Q-learning map F:

$$(FQ)(i,u) = E_j \left\{ g(i,u,j) + \alpha \min_{u'} Q(j,u') \right\}$$

is a sup-norm contraction.

- Generic stochastic approximation algorithm:
 - Consider generic fixed point problem involving an expectation:

$$x = E_w\{f(x, w)\}$$

- Assume $E_w\{f(x,w)\}$ is a contraction with respect to some norm, so the iteration

$$x_{k+1} = E_w\{f(x_k, w)\}$$

converges to the unique fixed point

- Approximate $E_w\{f(x,w)\}$ by sampling

STOCH. APPROX. CONVERGENCE IDEAS

• For each k, obtain samples $\{w_1, \ldots, w_k\}$ and use the approximation

$$x_{k+1} = \frac{1}{k} \sum_{t=1}^{k} f(x_k, w_t) \approx E\{f(x_k, w)\}$$

- This iteration approximates the convergent fixed point iteration $x_{k+1} = E_w\{f(x_k, w)\}$
- A major flaw: it requires, for each k, the computation of $f(x_k, w_t)$ for all values $w_t, t = 1, ..., k$.
- This motivates the more convenient iteration

$$x_{k+1} = \frac{1}{k} \sum_{t=1}^{k} f(x_t, w_t), \qquad k = 1, 2, \dots,$$

that is similar, but requires much less computation; it needs only one value of f per sample w_t .

• By denoting $\gamma_k = 1/k$, it can also be written as

$$x_{k+1} = (1 - \gamma_k)x_k + \gamma_k f(x_k, w_k), \quad k = 1, 2, \dots$$

• Compare with Q-learning, where the fixed point problem is Q = FQ

$$(FQ)(i,u) = E_j \left\{ g(i,u,j) + \alpha \min_{u'} Q(j,u') \right\}$$

Q-FACTOR APROXIMATIONS

• We introduce basis function approximation:

$$\tilde{Q}(i, u, r) = \phi(i, u)'r$$

- We can use approximate policy iteration and LSPE/LSTD for policy evaluation
- Optimistic policy iteration methods are frequently used on a heuristic basis
- Example: Generate trajectory $\{(i_k, u_k) \mid k = 0, 1, \ldots\}$.
- At iteration k, given r_k and state/control (i_k, u_k) :
 - (1) Simulate next transition (i_k, i_{k+1}) using the transition probabilities $p_{i_k j}(u_k)$.
 - (2) Generate control u_{k+1} from

$$u_{k+1} = \arg\min_{u \in U(i_{k+1})} \tilde{Q}(i_{k+1}, u, r_k)$$

(3) Update the parameter vector via

$$r_{k+1} = r_k - (LSPE \text{ or TD-like correction})$$

• Complex behavior, unclear validity (oscillations, etc). There is solid basis for an important special case: optimal stopping (see text)

APPROXIMATION IN POLICY SPACE

- We parameterize policies by a vector $r = (r_1, \ldots, r_s)$ (an approximation architecture for policies).
- Each policy $\tilde{\mu}(r) = \{\tilde{\mu}(i;r) \mid i = 1,\ldots,n\}$ defines a cost vector $J_{\tilde{\mu}(r)}$ (a function of r).
- We optimize some measure of $J_{\tilde{\mu}(r)}$ over r.
- \bullet For example, use a random search, gradient, or other method to minimize over r

$$\sum_{i=1}^{n} p_i J_{\tilde{\mu}(r)}(i),$$

where (p_1, \ldots, p_n) is some probability distribution over the states.

• An important special case: Introduce cost approximation architecture V(i,r) that defines indirectly the parameterization of the policies

$$\tilde{\mu}(i;r) = \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i,u,j) + \alpha V(j,r)), \ \forall i$$

• Brings in features to approximation in policy space

APPROXIMATION IN POLICY SPACE METHODS

- Random search methods are straightforward and have scored some impressive successes with challenging problems (e.g., tetris).
- Gradient-type methods (known as policy gradient methods) also have been worked on extensively.
- They move along the gradient with respect to r of

$$\sum_{i=1}^{n} p_i J_{\tilde{\mu}(r)}(i),$$

- There are explicit gradient formulas which have been approximated by simulation
- Policy gradient methods generally suffer by slow convergence, local minima, and excessive simulation noise

FINAL WORDS AND COMPARISONS

- There is no clear winner among ADP methods
- There is interesting theory in all types of methods (which, however, does not provide ironclad performance guarantees)
- There are major flaws in all methods:
 - Oscillations and exploration issues in approximate PI with projected equations
 - Restrictions on the approximation architecture in approximate PI with aggregation
 - Flakiness of optimization in policy space approximation
- Yet these methods have impressive successes to show with enormously complex problems, for which there is no alternative methodology
- There are also other competing ADP methods (rollout is simple, often successful, and generally reliable; approximate LP is worth considering)
- Theoretical understanding is important and nontrivial
- Practice is an art and a challenge to our creativity!

MIT OpenCourseWare http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.