
6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

• Review of Q-factors and Bellman equations for
Q-factors

• VI and PI for Q-factors

• Q-learning - Combination of VI and sampling

• Q-learning and cost function approximation

• Approximation in policy space

1

DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

Transition probabilities: pij(u)•

 



   



• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

N

Jπ(i) = lim E
N→∞

{

αkg ik, µk(ik), ik+1 i = i0
k

∑

=0

()

|

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

n

(TJ)(i) = min
∑

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,
u∈U(i)

j=1

n

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n
j=1

∑

()(())

2

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ,n

J∗(i) = lim (T kJ)(i),
k→∞

∀ i = 1, . . . , n

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

n

J k k
µk (i) =

∑

pij
(

µ (i)
)(

g
(

i, µ (i), j
)

+αJµk (j)
)

, i = 1, . . . , n
j=1

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

n

k+1µ (i) ∈ arg min pij(u) g(i, u, j)+αJµk (j) , ∀ i
u∈U(i)

∑

j=1

()

or Tµk+1Jµk = TJµk

• We discussed approximate versions of VI and
PI using projection and aggregation

• We focused so far on cost functions and approx-
imation. We now consider Q-factors.

3

BELLMAN EQUATIONS FOR Q-FACTORS

• The optimal Q-factors are defined by
n

Q∗(i, u) =
∑

p ∗
ij(u)

(

g(i, u, j) +αJ (j)
)

, ∀ (i, u)
j=1

• Since J∗ = TJ∗, we have J∗(i) = minu∈U(i) Q∗(i, u)
so the optimal Q-factors solve the equation

n

Q∗(i, u) =
∑

pij(u)

(

g(i, u, j) + α min Q∗(j,
u′

u′)
∈U(j)

j=1

)

• Equivalently Q∗ = FQ∗, where
n

(FQ)(i, u) =
∑

p ′
ij(u)

(

g(i, u, j) + α
′

min Q(j, u)
u ∈U(j)

j=1

)

• This is Bellman’s Eq. for a system whose states
are the pairs (i, u)

• Similar mapping Fµ and Bellman equation for
a policy µ: Qµ = FµQµ

)

State-Control Pairs States

) States

)

j)

4

) States

State-Control Pairs (i, u) States

) States j p

j pij(u)

) g(i, u, j)

v µ(j)

j)
(

j, µ(j)
)

State-Control Pairs: Fixed Policy µ

SUMMARY OF BELLMAN EQS FOR Q-FACTORS

)

State-Control Pairs States

) States

)

j)

Case (

• Optimal Q-factors: For all (i, u)

n

Q∗(i, u) =
∑

p Q∗
ij(u)

(

g(i, u, j) + α min
u′

(j, u′)
∈U(j)

j=1

)

Equivalently Q∗ = FQ∗, where
n

(FQ)(i, u) =
∑

pij(u)

(

g(i, u, j) + α
′

min Q(j, u′)
u ∈U(j)

j=1

)

• Q-factors of a policy µ: For all (i, u)

n

Qµ(i, u) =
∑

pij(u)
(

g(i, u, j) + αQµ j,
j=1

(

µ(j)
))

Equivalently Qµ = FµQµ, where
n

(FµQ)(i, u) = pij(u) g(i, u, j) + αQ j, µ(j)
∑

j=1

(())

5

) States

State-Control Pairs (i, u) States

) States j p

j pij(u)

) g(i, u, j)

v µ(j)

j)
(

j, µ(j)
)

State-Control Pairs: Fixed Policy µ

WHAT IS GOOD AND BAD ABOUT Q-FACTORS

• All the exact theory and algorithms for costs
applies to Q-factors

− Bellman’s equations, contractions, optimal-
ity conditions, convergence of VI and PI

• All the approximate theory and algorithms for
costs applies to Q-factors

− Projected equations, sampling and exploration
issues, oscillations, aggregation

• A MODEL-FREE (on-line) controller imple-
mentation

− Once we calculate Q∗(i, u) for all (i, u),

µ∗(i) = arg min Q∗(i, u), i
u∈U(i)

∀

− Similarly, once we calculate a parametric ap-
proximation Q̃(i, u, r) for all (i, u),

µ̃(i) = arg min Q̃(i, u, r), i
u∈U(i)

∀

• The main bad thing: Greater dimension and
more storage! [Can be used for large-scale prob-
lems only through aggregation, or other cost func-
tion approximation.]

6

Q-LEARNING

• In addition to the approximate PI methods
adapted for Q-factors, there is an important addi-
tional algorithm:

− Q-learning, which can be viewed as a sam-
pled form of VI

• Q-learning algorithm (in its classical form):

− Sampling: Select sequence of pairs (ik, uk)
(use any probabilistic mechanism for this,
but all pairs (i, u) are chosen infinitely of-
ten.)

− Iteration: For each k, select jk according to
pikj(uk). Update just Q(ik, uk):

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk

(

g(ik, uk, jk) + α min
u′

Qk(jk, u′)
∈U(jk)

)

Leave unchanged all other Q-factors: Qk+1(i, u) =
Qk(i, u) for all (i, u) = (ik, uk).

− Stepsize conditions: γk must converge to 0
at proper rate (e.g., like 1/k).

.

7

NOTES AND QUESTIONS ABOUT Q-LEARNING

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk

(

g(ik, uk, jk) + α
′

min Q ′
k(jk, u)

u ∈U(jk)

)

• Model free implementation. We just need a
simulator that given (i, u) produces next state j
and cost g(i, u, j)

• Operates on only one state-control pair at a
time. Convenient for simulation, no restrictions on
sampling method.

• Aims to find the (exactly) optimal Q-factors.

• Why does it converge to Q∗?

• Why can’t I use a similar algorithm for optimal
costs?

• Important mathematical (fine) point: In the Q-
factor version of Bellman’s equation the order of
expectation and minimization is reversed relative
to the cost version of Bellman’s equation:

n

J∗(i) = min pij(u) g(i, u, j) + αJ∗(j)
u∈U(i)

j=1

∑

()

8

CONVERGENCE ASPECTS OF Q-LEARNING

• Q-learning can be shown to converge to true/exact
Q-factors (under mild assumptions).

• Proof is sophisticated, based on theories of
stochastic approximation and asynchronous algo-
rithms.

• Uses the fact that the Q-learning map F :

(FQ)(i, u) = Ej g(i, u, j) + αmin
u′

Q(j, u′)

is a sup-norm contr

{

action.

}

• Generic stochastic approximation algorithm:

− Consider generic fixed point problem involv-
ing an expectation:

x = Ew f(x,w)

− Assume Ew f(x,w)

{

is a co

}

ntraction with
respect to so

{

me norm

}

, so the iteration

xk+1 = Ew

co

{

f(xk, w)

nverges to the unique fixed po

}

int

Approximate Ew f(x,w) by sampling−
{ }

9

STOCH. APPROX. CONVERGENCE IDEAS

• For each k, obtain samples {w1, . . . , wk} and
use the approximation

k
1

xk+1 =
∑

f(xk, wt)
k

t=1

≈ E f(xk, w)

This iteration approximates the

{

convergen

}

• t fixed
point iteration xk+1 = Ew

{

f(xk, w)

• Amajor flaw: it requires, for each

}

k, the compu-
tation of f(xk, wt) for all values wt, t = 1, . . . , k.

• This motivates the more convenient iteration
k

1
xk+1 =

∑

f(xt, wt), k = 1, 2, . . . ,
k

t=1
that is similar, but requires much less computa-
tion; it needs only one value of f per sample wt.

• By denoting γk = 1/k, it can also be written as

xk+1 = (1− γk)xk + γkf(xk, wk), k = 1, 2, . . .

• Compare with Q-learning, where the fixed point
problem is Q = FQ

(FQ)(i, u) = Ej g(i, u, j) + αmi
′

nQ(j, u′)
{

u

}

10

Q-FACTOR APROXIMATIONS

• We introduce basis function approximation:

Q̃(i, u, r) = φ(i, u)′r

• We can use approximate policy iteration and
LSPE/LSTD for policy evaluation

• Optimistic policy iteration methods are fre-
quently used on a heuristic basis

• Example: Generate trajectory {(ik, uk) | k =
0, 1, . . .}.

• At iteration k, given rk and state/control (ik, uk):

(1) Simulate next transition (ik, ik+1) using the
transition probabilities pikj(uk).

(2) Generate control uk+1 from

uk+1 = arg min Q̃(ik+1, u, rk)
u∈U(ik+1)

(3) Update the parameter vector via

rk+1 = rk − (LSPE or TD-like correction)

• Complex behavior, unclear validity (oscilla-
tions, etc). There is solid basis for an important
special case: optimal stopping (see text)

11

APPROXIMATION IN POLICY SPACE

• We parameterize policies by a vector r =
(r1, . . . , rs) (an approximation architecture for poli-
cies).

• Each policy µ̃(r) =
{

µ̃(i; r) | i = 1, . . . , n
defines a cost vector Jµ̃(r) (a function of r).

}

• We optimize some measure of Jµ̃(r) over r.

• For example, use a random search, gradient, or
other method to minimize over r

n
∑

piJµ̃(r)(i),
i=1

where (p1, . . . , pn) is some probability distribution
over the states.

• An important special case: Introduce cost ap-
proximation architecture V (i, r) that defines indi-
rectly the parameterization of the policies

n

µ̃(i; r) = arg min p
u∈U(i)

∑

ij(u)
j=1

(

g(i, u, j)+αV (j, r)
)

, ∀ i

• Brings
space

in features to approximation in policy

12

APPROXIMATION IN POLICY SPACE METHOD

• Random search methods are straightforward
and have scored some impressive successes with
challenging problems (e.g., tetris).

• Gradient-type methods (known as policy gra-
dient methods) also have been worked on exten-
sively.

• They move along the gradient with respect to
r of

n
∑

piJµ̃(r)(i),
i=1

• There are explicit gradient formulas which have
been approximated by simulation

• Policy gradient methods generally suffer by slow
convergence, local minima, and excessive simula-
tion noise

S

13

FINAL WORDS AND COMPARISONS

• There is no clear winner among ADP methods

• There is interesting theory in all types of meth-
ods (which, however, does not provide ironclad
performance guarantees)

• There are major flaws in all methods:

− Oscillations and exploration issues in approx-
imate PI with projected equations

− Restrictions on the approximation architec-
ture in approximate PI with aggregation

− Flakiness of optimization in policy space ap-
proximation

• Yet these methods have impressive successes
to show with enormously complex problems, for
which there is no alternative methodology

• There are also other competing ADP methods
(rollout is simple, often successful, and generally
reliable; approximate LP is worth considering)

• Theoretical understanding is important and
nontrivial

• Practice is an art and a challenge to our cre-
ativity! 14

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

