6.231 DYNAMIC PROGRAMMING
LECTURE 6
LECTURE OUTLINE

e Review of Q-factors and Bellman equations for
Q-factors

e VI and PI for Q-factors
e ()-learning - Combination of VI and sampling
e ()-learning and cost function approximation

e Approximation in policy space

DISCOUNTED MDP

e System: Controlled Markov chain with states
i =1,...,n and finite set of controls u € U (%)

e Transition probabilities: p;;(u)
piu)
SOOI

pji{u)

e Cost of a policy m = {uo, p1,...} starting at
state :

N — o0
k=0

J-(i) = lim FE {Z Oékg(ik;,,uk(ik),ik_l_l) |7 = 730}

with a € [0,1)
e Shorthand notation for DP mappings

(T)(6) = min Y pi(u)(g(i,u, j)+a(5), i=1,...,n,

THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any J € R»

J*(i) = lim (TkJ)(7), Vi=1,...,n

k— 00

e Policy iteration: Given u*
— Policy evaluation: Find J,» by solving

= > i (1) (9(1" (0),5) v (7)), i=1,...

or Jluk B TMk:JMk:

— Policy improvement: Let puf+1 be such that

k—l—l . . .
:U“ 6 argurénl}r(l) pr 7’ ’U,,'])"—Oéjuk (]))7 \V/Z

or Tluk—i—l J,u"“ = TJMI«

e We discussed approximate versions of VI and
PI using projection and aggregation

e We focused so far on cost functions and approx-
imation. We now consider Q-factors.

3

BELLMAN EQUATIONS FOR Q-FACTORS

e The optimal ()-factors are defined by

n

Q*(iyu) =Y pij () (9(i,u, j) +J*(4)), V¥ (i,u)
j=1

e Since J* = T'J*, we have J*(i) = min, ey ;) Q* (%, u)

so the optimal ()-factors solve the equation

_Zn;pij(u)(i,u,7) +a min Q*(J,U’))

u' eU(j)

o Equivalently Q* = F'Q*, where

(FQ)(7,u) pr ((4,u,7) + @ min Q(],M))

u' €U (j)

e Thisis Bellman’s Eq. for a system whose states
are the pairs (i, u)

e Similar mapping F), and Bellman equation for
a policy pu: Qu = FuQy

State-Control Pairs: Fixed Policy pu

States

SUMMARY OF BELLMAN EQS FOR Q-FACTORS

State-Control Pairs: Fixed Policy u

States

e Optimal Q-factors: For all (7, u)

Q-(ivu) = Y pis(w) (96i i) +a min Qi))

uw €U(j)
Equivalently Q* = F'Q)*, where

FQ Zu szj (Z7u7j)+a min Q(],U’))

u' €U (j)

e (Q-factors Of a policy p: For all (i, u)
j=1

Equivalently Qu = F,,(Q),,, where

F Q Z U me 7’ u,])+aQ<],,LL(j))>

WHAT IS GOOD AND BAD ABOUT Q-FACTORS

e All the exact theory and algorithms for costs
applies to Q-factors

— Bellman’s equations, contractions, optimal-
ity conditions, convergence of VI and PI

e All the approximate theory and algorithms for
costs applies to Q-factors

— Projected equations, sampling and exploration
issues, oscillations, aggregation

e A MODEL-FREE (on-line) controller imple-
mentation

— Once we calculate Q*(¢,u) for all (¢, u),

o n OGiu) Vi
p*(2) arguren(}%)Q (4, u) i

— Similarly, once we calculate a parametric ap-
proximation Q(z,u,r) for all (i, u),

ii(i) = arg min Q(i,u,r), W)
uelU (1)

e¢ The main bad thing: Greater dimension and
more storage! [Can be used for large-scale prob-
lems only through aggregation, or other cost func-
tion approximation. |

6

Q-LEARNING

e In addition to the approximate PI methods
adapted for Q-factors, there is an important addi-
tional algorithm:

— (@-learning, which can be viewed as a sam-
pled form of VI

e ()-learning algorithm (in its classical form):

— Sampling: Select sequence of pairs (ix, ug)
(use any probabilistic mechanism for this,
but all pairs (7,u) are chosen infinitely of-
ten.)

— Iteration: For each k, select 5. according to

pi.j(ur). Update just Q(ig, ug):
Qr+1(ik,ur) = (1 — %) Qr (i, uk)

+ e | 9(ik, uk, jk) + @ min Qr(jr,w)
u €U (jr)

Leave unchanged all other Q-factors: Qp+1(2,u) =
Qr (7, u) for all (¢,u) # (g, uk).

— Stepsize conditions: v, must converge to 0
at proper rate (e.g., like 1/k).

7

NOTES AND QUESTIONS ABOUT Q-LEARNING

Qr+1(ik,ur) = (1 — 7)) Qr Tk, k)

+ Yk | 90k, uk, jr) + o min - Qg (jr, w)
u’EU(]k)
e Model free implementation. We just need a
simulator that given (i,u) produces next state j
and cost g(¢,u, j)

e Operates on only one state-control pair at a
time. Convenient for simulation, no restrictions on
sampling method.

e Aims to find the (exactly) optimal Q-factors.
e Why does it converge to (Q*7

e Why can’t I use a similar algorithm for optimal
costs?

e Important mathematical (fine) point: In the Q-
factor version of Bellman’s equation the order of
expectation and minimization is reversed relative
to the cost version of Bellman’s equation:

n

J*(i) = min Zp’ij(u)<g(i7uaj) +aJ*(j))

CONVERGENCE ASPECTS OF Q-LEARNING

e (-learning can be shown to converge to true/exact
Q-factors (under mild assumptions).

e Proof is sophisticated, based on theories of
stochastic approximation and asynchronous algo-
rithms.

e Uses the fact that the Q-learning map F:

(FQ)(i,u) = B;{g(i, u,§) + aminQ(j,u) }
1S a sup-norm contraction.

e Generic stochastic approximation algorithm:

— Consider generic fixed point problem involv-
ing an expectation:

T = Ew{f(a:,w)}

— Assume FEy{f(z,w)} is a contraction with
respect to some norm, so the iteration

Trt1 = Ew{f(zr, w)}

converges to the unique fixed point
— Approximate Ew{ f(x, w)} by sampling

9

STOCH. APPROX. CONVERGENCE IDEAS

e For each k, obtain samples {wi,...,w;} and
use the approximation

k
Lhk+1 = % Zf(xkawt) ~ E{f(xkaw)}
t=1

e Thisiteration approximates the convergent fixed
point iteration xp 1 = Ew{f(a:k, w)}

e A major flaw: it requires, for each k, the compu-
tation of f(xk,w;) for all values wy, t =1,..., k.

e 'This motivates the more convenient iteration

k
1
ZIZk_|_1:Et:Zlf(ZCt,’wt), k:1,2,...,

that is similar, but requires much less computa-
tion; it needs only one value of f per sample w;.

e By denoting v = 1/k, it can also be written as

Tht1 = (1 —ve)zr + v f(Te, wr), k=1,2,...

e Compare with (Q-learning, where the fixed point
problem is () = F'()

(FQ)(i,u) = Ej{g(i,u, j) + aminQ(j, uv') }

10

Q-FACTOR APROXIMATIONS

e We introduce basis function approximation:

~

Qé,u,r) = (i, u)r

e We can use approximate policy iteration and
LSPE/LSTD for policy evaluation

e Optimistic policy iteration methods are fre-
quently used on a heuristic basis

e [Example: Generate trajectory {(ig,ur) | k =
0,1,...}.

e At iteration k, given 7y and state/control (ix, ug):

(1) Simulate next transition (ig,ix+1) using the
transition probabilities p;, ;(ur).

(2) Generate control ug41 from

~

Ug1 = arg min = Q(ik41,u, k)
UEU(’Lk+1)

(3) Update the parameter vector via

rr+1 = rx — (LSPE or TD-like correction)

e Complex behavior, unclear validity (oscilla-
tions, etc). There is solid basis for an important
special case: optimal stopping (see text)

11

APPROXIMATION IN POLICY SPACE

e We parameterize policies by a vector r =
(r1,...,7s) (an approximation architecture for poli-
cies).

e Each policy a(r) = {a(ir) | i = 1,...,n}
defines a cost vector Jj(,) (a function of r).

e We optimize some measure of J;(,) over r.

e For example, use a random search, gradient, or
other method to minimize over r

> pidag (i),
1=1

where (p1,...,pn) is some probability distribution
over the states.

e An important special case: Introduce cost ap-
proximation architecture V' (i,r) that defines indi-
rectly the parameterization of the policies

fi;r) = arg min > pij(u)(g(i,u, §)+aV(j,r)), Vi
j=1

e DBrings in features to approximation in policy
space

12

APPROXIMATION IN POLICY SPACE METHODS

e Random search methods are straightforward
and have scored some impressive successes with
challenging problems (e.g., tetris).

e Gradient-type methods (known as policy gra-
dient methods) also have been worked on exten-
sively.

e They move along the gradient with respect to
r of

1=1

e There are explicit gradient formulas which have
been approximated by simulation

e Policy gradient methods generally suffer by slow
convergence, local minima, and excessive simula-
tion noise

13

FINAL WORDS AND COMPARISONS

e 'There is no clear winner among ADP methods

e Thereis interesting theory in all types of meth-
ods (which, however, does not provide ironclad
performance guarantees)

e There are major flaws in all methods:

— Oscillations and exploration issues in approx-
imate PI with projected equations

— Restrictions on the approximation architec-
ture in approximate PI with aggregation

— Flakiness of optimization in policy space ap-
proximation

e Yet these methods have impressive successes
to show with enormously complex problems, for
which there is no alternative methodology

e There are also other competing ADP methods
(rollout is simple, often successful, and generally
reliable; approximate LP is worth considering)

e Theoretical understanding is important and
nontrivial

e Practice is an art and a challenge to our cre-
ativity! y

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

