
6.231 DYNAMIC PROGRAMMING

LECTURE 5

LECTURE OUTLINE

• Review of approximate PI

• Review of approximate policy evaluation based
on projected Bellman equations

• Exploration enhancement in policy evaluation

• Oscillations in approximate PI

• Aggregation – An alternative to the projected
equation/Galerkin approach

• Examples of aggregation

• Simulation-based aggregation

1

DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

Transition probabilities: pij(u)•

 



   



• Cost of a policy π = {µ0 1

state i:

Jπ(i) = lim E

{

N
∑

αkg
(

ik, µk(ik), ik+1
N→∞

k=0

)

| i = i0

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

n

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n,
u∈U(i)

∑

j=1

()

n

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n
j=1

, µ , . . .} starting at

∑

()(())

2

APPROXIMATE PI

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Evaluation of typical policy µ: Linear cost func-
tion approximation

J̃µ(r) = Φr

where Φ is full rank n × s matrix with columns
the basis functions, and ith row denoted φ(i)′.

• Policy “improvement” to generate µ:
n

µ(i) = arg min pij(u) g(i, u, j) + αφ(j)′r
u∈U(i)

j=1

∑

()

3

EVALUATION BY PROJECTED EQUATIONS

• We discussed approximate policy evaluation by
solving the projected equation

Φr = ΠTµ(Φr)
Π: projection with a weighted Euclidean norm

• Implementation by simulation (single long tra-
jectory using current policy - important to make
ΠTµ a contraction). LSTD, LSPE methods.

• ()Multistep option: SolveΦ r = ΠT λ
µ (Φr) with

∞
(T λ) = (1− λ)

∑

λ"T "+1
µ µ

"=0
− As λ ↑ 1,Π T (λ) becomes a contraction for

any projection norm

Bias-variance tradeoff−

Subspace S = {Φr | r ∈ "s}

Jµ

Simulation error
ΠJµ

Bias

λ = 0

= 0 λ = 1

Solution of projected equation

Simulation error

Φr = ΠT (λ)(Φr)

Set

Slope

Simulation error

Simulation error

)

0

. Φ

Solution of

∗

4

POLICY ITERATION ISSUES: EXPLORATION

• 1st major issue: exploration. To evaluate µ,
we need to generate cost samples using µ

• This biases the simulation by underrepresenting
states that are unlikely to occur under µ.

• As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate.

• This seriously impacts the improved policy µ.

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system).

• Common remedy is the off-policy approach: Re-
place P of current policy with a “mixture”

P = (I −B)P +BQ

where B is diagonal with diagonal components in
[0, 1] and Q is another transition matrix.

• LSTD and LSPE formulas must be modified ...
otherwise the policy P (not P) is evaluated. Re-
lated methods and ideas: importance sampling,
geometric and free-form sampling (see the text).

5

POLICY ITERATION ISSUES: OSCILLATIONS

• 2nd major issue: oscillation of policies

• Analysis using the greedy partition: Rµ is the
set of parameter vectors r for which µ is greedy
with respect to J̃(·, r) = Φr

Rµ =
{

r | Tµ(Φr) = T (Φr)

• There is a finite number of possible

}

vectors rµ,
one generated from another in a deterministic way

rµk

rµk+1

rµk+2

rµk+3

Rµk

Rµk+1

Rµk+2

Rµk+3
k

+1

+2

+2

• The algorithm ends up repeating some cycle of
policies µk, µk+1, . . . , µk+m with

rµk ∈ Rµk+1 , rµk+1 ∈ Rµk+2 , . . . , rµk+m ∈ Rµk ;

Many different cycles are possible•
6

MORE ON OSCILLATIONS/CHATTERING

• In the case of optimistic policy iteration a dif-
ferent picture holds

rµ1

rµ2

rµ3

Rµ1

Rµ2

Rµ3

1

2

2

• Oscillations are less violent, but the “limit”
point is meaningless!

• Fundamentally, oscillations are due to the lack
of monotonicity of the projection operator, i.e.,
J ≤ J ′ does not implyΠ J ≤ ΠJ ′.

• If approximate PI uses policy evaluation

Φr = (WTµ)(Φr)

with W a monotone operator, the generated poli-
cies converge (to a possibly nonoptimal limit).

• The operator W used in the aggregation ap-
proach has this monotonicity property.

7

PROBLEM

• Anoth
the cost-
cost-to-g

• The si

• Aggre
lem appr

Int

APPROXIMATION - AGGREGATION

er major idea in ADP is to approximate
to-go function of the problem with the
o function of a simpler problem.

mplification is often ad-hoc/problem-dependent.

gation is a systematic approach for prob-
oximation. Main elements:

− roduce a few “aggregate” states, viewed
as the states of an “aggregate” system

− Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

• Hard aggregation example: Aggregate states
are subsets of original system states, treated as if
they all have the same cost.

8

AGGREGATION/DISAGGREGATION PROBS

pij(u),

dxi
φjyQ

, ji

x y

Original
System States

Aggregate States

Disaggregation

Probabilities
Aggregation
Probabilities

Matrix D Matrix Φ

according to with cost

S

= 1

),),

System States Aggregate States

{

Original Aggregate States

{

|

Original System States

Probabilities

{

Aggregation
Disaggregation Probabilities

Probabilities
Disaggregation Probabilities

{

Aggregation
Disaggregation Probabilities

Matrix D

• The aggregate system transition probabilities
are defined via two (somewhat arbitrary) choices

• For each original system state j and aggregate
state y, the aggregation probability φjy

− Roughly, the “degree of membership of j in
the aggregate state y.”

− In hard aggregation, φjy = 1 if state j be-
longs to aggregate state/subset y.

• For each aggregate state x and original system
state i, the disaggregation probability dxi

− Roughly, the “degree to which i is represen-
tative of x.”

− In hard aggregation, equal dxi
9

AGGREGATE SYSTEM DESCRIPTION

• The transition probability from aggregate state
x to aggregate state y under control u

n n

p̂xy(u) =
∑

dxi or
i

∑

pij(u)φjy, P̂ (u) = DP (u)Φ
=1 j=1

where the rows of D and Φ are the disaggregation
and aggregation probs.

• The expected transition cost is

n n

ĝ(x, u) =
∑

dxi
∑

pij(u)g(i, u, j), or ĝ = DPg
i=1 j=1

• The optimal cost function of the aggregate prob-
lem, denoted R̂, is

R̂(x) = min

[

ĝ(x, u) + α
∑

p̂xy(u)R̂(y)
u∈U

y

]

, ∀ x

Bellman’s equation for the aggregate problem.

• The optimal cost function J∗ of the original
problem is approximated by J̃ given by

J̃(j) =
∑

φjyR̂(y),
y

∀ j

10

EXAMPLE I: HARD AGGREGATION

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs.: φjy = 1 if j belongs to
aggregate state y.

• Disaggregation probs.: There are many possi-
bilities, e.g., all states i within aggregate state x
have equal prob. dxi.

• If optimal cost vector J∗ is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

• A variant: Soft aggregation (provides “soft
boundaries” between aggregate states).

3 4 5 6 7 8 93 4 5 6 7 8 9 6 7 8 9

1 2 6 7 8 91 2 6 7 8 91 2 9

1 2 3 4 5 91 2 3 4 5 91 2 3 4 5

1 2 3 4 5 6 7 8

11

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

Φ =



























1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1



























EXAMPLE II: FEATURE-BASED AGGREGATION

• Important question: How do we group states
together?

• If we know good features, it makes sense to
group together states that have “similar features”

States Aggregate StatesFeatures

Feature
Extraction

Special Aggregate States Features
)

Special States FeaturesSpecial States Aggregate States

Feature Extraction Mapping Vector
Feature Mapping Feature Vector

• A general approach for passing from a feature-
based state representation to an aggregation-based
architecture

• Essentially discretize the features and generate
a corresponding piecewise constant approximation
to the optimal cost function

• Aggregation-based architecture is more power-
ful (nonlinear in the features)

• ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture

12

EXAMPLE III: REP. STATES/COARSE GRID

• Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state

x j

j2

j3

x j1

y1 y2

y3

Original State Space

Representative/Aggregate States

x j1

j2

j3 1

2

y3

• Disaggregation probabilities are dxi = 1 if i is
equal to representative state x.

• Aggregation probabilities associate original sys-
tem states with convex combinations of represen-
tative states

j ∼
y

∑

φjyy
∈A

• Well-suited for Euclidean space discretization

• Extends nicely to continuous state space, in-
cluding belief space of POMDP

13

EXAMPLE IV: REPRESENTATIVE FEATURES

• Here the aggregate states are nonempty sub-
sets of original system states (but need not form
a partition of the state space)

• Example: Choose a collection of distinct “rep-
resentative” feature vectors, and associate each of
them with an aggregate state consisting of original
system states with similar features

• Restrictions:

− The aggregate states/subsets are disjoint.

− The disaggregation probabilities satisfy dxi >
0 if and only if i ∈ x.

− The aggregation probabilities satisfy φjy = 1
for all j ∈ y.

• If every original system state i belongs to some
aggregate state we obtain hard aggregation

• If every aggregate state consists of a single orig-
inal system state, we obtain aggregation with rep-
resentative states

• With the above restrictionsDΦ = I, so (ΦD)(ΦD) =
ΦD, and ΦD is an oblique projection (orthogonal
projection in case of hard aggregation)

14

APPROXIMATE PI BY AGGREGATION

pij(u),

dxi φjyQ

, ji

x y

Original
{System States

|
Aggregate States

p̂xy(u) =
n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation
{

Probabilities

Aggregation
{

Probabilities

ĝ(x, u) =
n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix

according to with cost

S

= 1

),),

System States Aggregate States
Original Aggregate States

{

Original System States

Probabilities

Aggregation
Disaggregation Probabilities

Probabilities
Disaggregation ProbabilitiesAggregation

Disaggregation Probabilities

Matrix

• Consider approximate policy iteration for the
original problem, with policy evaluation done by
aggregation.

• Evaluation of policy µ: J̃ = ΦR, where R =
DTµ(ΦR) (R is the vector of costs of aggregate
states for µ). Can be done by simulation.

• Looks like projected equationΦ R = ΠTµ(ΦR)
(but withΦ D in place of Π).

• Advantages: It has no problem with exploration
or with oscillations.

• Disadvantage: The rows of D and Φ must be
probability distributions.

15

DISTRIBUTED AGGREGATION I

• We consider decomposition/distributed solu-
tion of large-scale discounted DP problems by ag-
gregation.

• Partition the original system states into subsets
S1, . . . , Sm

• Each subset S", & = 1, . . . ,m:

− Maintains detailed/exact local costs

J(i) for every original system state i ∈ S"

using aggregate costs of other subsets

− Maintains an aggregate costR(&) = i∈S"
d"iJ(i)

− Sends R(&) to other aggregate state

∑

s

• J(i) and R(&) are updated by VI according to

Jk+1(i) = min H"(i, u, Jk, Rk),
u∈U(i)

∀ i ∈ S"

with Rk being the vector of R(&) at time k, and

n

H#(i, u, J,R) =
∑

pij(u)g(i, u, j) + α

j=1 j

∑

pij(u)J(j)

∈S"

+ α

j∈S

∑

pij(u)R("′)

"′ , #
′ #

%
16

%=

DISTRIBUTED AGGREGATION II

• Can show that this iteration involves a sup-
norm contraction mapping of modulus α, so it
converges to the unique solution of the system of
equations in (J,R)

J(i) = min H"(i, u, J,R), R(&) =
u∈U(i)

i

∑

d"iJ(i),
∈S"

∀ i ∈ S", & = 1, . . . ,m.

• This follows from the fact that {d"i | i =
1, . . . , n} is a probability distribution.

• View these equations as a set of Bellman equa-
tions for an “aggregate” DP problem. The differ-
ence is that the mapping H involves J(j) rather
than R x(j) for j ∈ S".

• In an

(

asyn

)

chronous version of the method, the
aggregate costs R(&) may be outdated to account
for communication “delays” between aggregate states.

• Convergence can be shown using the general
theory of asynchronous distributed computation
(see the text).

17

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

