6.231 DYNAMIC PROGRAMMING
LECTURE 5

LECTURE OUTLINE

e Review of approximate PI

e Review of approximate policy evaluation based
on projected Bellman equations

e Lxploration enhancement in policy evaluation
e Oscillations in approximate PI

e Aggregation — An alternative to the projected
equation/Galerkin approach

e Examples of aggregation

e Simulation-based aggregation



DISCOUNTED MDP

e System: Controlled Markov chain with states
i =1,...,n and finite set of controls u € U (7)

e Transition probabilities: p;;(u)

e Cost of a policy m = {uo, pt1,...} starting at
state ¢:

J(i) = lim E{Zakg(zk,uk(ik),ml) |i:io}

N — o0
k=0

with o € [0,1)
e Shorthand notation for DP mappings

(T)(6) = min Y pi(u)(g(i,u,j)+a(5)), i=1,...,n,



APPROXIMATE PI

Guess Initial Policy

'

Evaluate Approximate Cost

~ Approximate Policy
Ju(r) = ®r Using Simulation Evaluation

|

«— Generate “Improved” Policy 1

Policy Improvement

e [Evaluation of typical policy p: Linear cost func-
tion approximation

ju(r) = Or

where @ is full rank n x s matrix with columns
the basis functions, and ¢th row denoted ¢(z)’.

e Policy “improvement” to generate fi:



EVALUATION BY PROJECTED EQUATIONS

e We discussed approximate policy evaluation by
solving the projected equation

¢r =117, (Pr)
II: projection with a weighted Euclidean norm

e Implementation by simulation ( single long tra-

jectory using current policy - important to make
IIT}, a contraction). LSTD, LSPE methods.

e Multistep option: Solve® r = HT(A)((I)T) with

TN = Z ALTEH

— As AP LI TO becomes a contraction for
any projection norm

— Bias-variance tradeoff

Solution of projected equation
Or = TN (Pr)

Simulation error

Bias

\ Simulation error

Subspace S = {®r | r € Rs}




POLICY ITERATION ISSUES: EXPLORATION

e 1st major issue: exploration. To evaluate p,
we need to generate cost samples using

e This biases the simulation by underrepresenting
states that are unlikely to occur under pu.

e As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate.

e This seriously impacts the improved policy 7.

e This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system).

e Common remedy is the off-policy approach: Re-
place P of current policy with a “mixture”

P=(I—-B)P+ BQ
where B is diagonal with diagonal components in
0,1] and @ is another transition matrix.

e LSTD and LSPE formulas must be modified ...
otherwise the policy P (not P) is evaluated. Re-
lated methods and ideas: importance sampling,
geometric and free-form sampling (see the text).
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POLICY ITERATION ISSUES: OSCILLATIONS

e 2nd major issue: oscillation of policies

e Analysis using the greedy partition: R, is the
set of parameter vectors r for which p is greedy
with respect to J(-,7) = ®r

R, ={r|T.,(®r)="T(dr)}

e There is a finite number of possible vectors 7,
one generated from another in a deterministic way

e The algorithm ends up repeating some cycle of
policies pk, pk+1, ... pktm with

Tk € R,uk:—|—1, Tkl € R,uk:—|—2, ooy Tyktm € Ruk;

e Many different cycles are possible
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MORE ON OSCILLATIONS/CHATTERING

e In the case of optimistic policy iteration a dif-
ferent picture holds

e Oscillations are less violent, but the “limit”
point is meaningless!

e Fundamentally, oscillations are due to the lack
of monotonicity of the projection operator, i.e.,

J < J’" does not implyll J < II1J’.

e If approximate PI uses policy evaluation
br = (WT,)(Pr)

with W a monotone operator, the generated poli-
cies converge (to a possibly nonoptimal limit).

e The operator W used in the aggregation ap-
proach has this monotonicity property.
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PROBLEM APPROXIMATION - AGGREGATION

e Another major idea in ADP is to approximate
the cost-to-go function of the problem with the
cost-to-go function of a simpler problem.

e The simplification is often ad-hoc/problem-dependent.

e Aggregation is a systematic approach for prob-
lem approximation. Main elements:

— Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

— Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

— Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

— Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

e Hard aggregation example: Aggregate states
are subsets of original system states, treated as if
they all have the same cost.



AGGREGATION/DISAGGREGATION PROBS

Original

System States
i w0
pij(u), N
Disaggregation Aggregation
Probabilities Probabilities
Matrix D Matrix ¢

Aggregate States

e The aggregate system transition probabilities
are defined via two (somewhat arbitrary) choices

e For each original system state 5 and aggregate
state y, the aggregation probability ¢;,

— Roughly, the “degree of membership of 5 in
the aggregate state y.”

— In hard aggregation, ¢;, = 1 if state j be-
longs to aggregate state/subset .
e For each aggregate state x and original system
state 7, the disaggregation probability d;

— Roughly, the “degree to which ¢ is represen-
tative of x.”

— In hard aggregation, equal d;

9



AGGREGATE SYSTEM DESCRIPTION

e The transition probability from aggregate state
x to aggregate state y under control u

Py (u Z A pr u)QPjy, Or f’(u) = DP(u)®

where the rows of D and ® are the disaggregation
and aggregation probs.

e The expected transition cost is
n n
= dui > pij(w)g(i,u,j), orj= DPyg
i=1 j=1

e The optimal cost function of the aggregate prob-
lem, denoted R, is

R(x) = min |§(a,u) + 0 puy(RE) |, Ve

Bellman’s equation for the aggregate problem.

e The optimal cost function J* of the original
problem is approximated by J given by

= dyR(y), VY
Yy
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EXAMPLE I: HARD AGGREGATION

e Group the original system states into subsets,
and view each subset as an aggregate state

e Aggregation probs.: ¢j, = 1 if 7 belongs to
aggregate state y.

1 000
1 2 3 1 0 0 O
° ° ° 01 0 0
1 2 1 00 0
of e’ of =10 0 0
| 01 0 0
.7 903.8 374.9 O 0 1 O
00 1 0

00 0 1/

e Disaggregation probs.: There are many possi-
bilities, e.g., all states ¢ within aggregate state x
have equal prob. d.;.

e If optimal cost vector J* is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

e A variant: Soft aggregation (provides “soft
boundaries” between aggregate states).
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EXAMPLE II: FEATURE-BASED AGGREGATION

e Important question: How do we group states
together?

e If we know good features, it makes sense to
group together states that have “similar features”

@ Extraction . .
P ° ° °
[ ] ® ®

States Features Aggregate States

e A general approach for passing from a feature-
based state representation to an aggregation-based
architecture

e Essentially discretize the features and generate
a corresponding piecewise constant approximation
to the optimal cost function

e Aggregation-based architecture is more power-
ful (nonlinear in the features)

e ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture
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EXAMPLE III: REP. STATES/COARSE GRID

e Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state

Original State Space
/

° CE / Y2 °

xr jl Y3

T ¢ e
e
J3 \
\

Representative/Aggregate States

e Disaggregation probabilities are dy; = 1 if 7 is
equal to representative state x.

e Aggregation probabilities associate original sys-
tem states with convex combinations of represen-

tative states
g~ Z DjyY
ye A

e Well-suited for Euclidean space discretization

e Extends nicely to continuous state space, in-
cluding belief space of POMDP
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EXAMPLE 1V: REPRESENTATIVE FEATURES

e Here the aggregate states are nonempty sub-
sets of original system states (but need not form
a partition of the state space)

e [Example: Choose a collection of distinct “rep-
resentative” feature vectors, and associate each of
them with an aggregate state consisting of original
system states with similar features

e Restrictions:

— The aggregate states/subsets are disjoint.

— The disaggregation probabilities satisty d,; >
0 if and only if 7 € .

— The aggregation probabilities satisty ¢, =1
for all j € y.

e If every original system state ¢ belongs to some
aggregate state we obtain hard aggregation

e If every aggregate state consists of a single orig-
inal system state, we obtain aggregation with rep-
resentative states

e With the above restrictions D® = I, so ( ®D)(®D) =
®D, and D is an oblique projection (orthogonal
projection in case of hard aggregation)
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APPROXIMATE PI BY AGGREGATION

Original
System Statfs
O—20E 0
pij(w), 9(i;u, j)
Disaggregation Matrix Aggregation
Probabi{ities Probabi{ities
i * * Pjy Q@

Aggregate States
O

e (onsider approximate policy iteration for the
original problem, with policy evaluation done by
aggregation.

e LEvaluation of policy pu: J = ®R, where R =
DT, (®PR) (R is the vector of costs of aggregate
states for p). Can be done by simulation.

e Looks like projected equation® R = II7,(PR)
(but with® D in place of II).

e Advantages: It has no problem with exploration
or with oscillations.

e Disadvantage: The rows of D and ® must be
probability distributions.
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DISTRIBUTED AGGREGATION I

e We consider decomposition/distributed solu-
tion of large-scale discounted DP problems by ag-
gregation.

e Partition the original system states into subsets

Sl,...,Sm
e FEach subset Sy, / =1,....m

— Maintains detailed /exact local costs
J(i) for every original system state ¢ € Sy

using aggregate costs of other subsets
— Maintains an aggregate cost R(£) = ) ;cg, deiJ (1)
— Sends R({) to other aggregate states
e J(i) and R(¢) are updated by VI according to

Jk+1( ) — min Hg(z u, Jk,Rk) Vie Sy
ueU (3)

with Ry being the vector of R(¢) at time k, and
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DISTRIBUTED AGGREGATION II

e (Can show that this iteration involves a sup-
norm contraction mapping of modulus «, so it
converges to the unique solution of the system of
equations in (J, R)

J(2) = min Hy(i,u,J,R), R{)= de; J(7),
()= Jmin, Heliu S R), R(O = 3 dud()

Vie Sy, £=1,...,m.

e This follows from the fact that {dy | i =
1,...,n} is a probability distribution.

e View these equations as a set of Bellman equa-
tions for an “aggregate” DP problem. The differ-
ence is that the mapping H involves J(j) rather
than R(z(j)) for j € Sy.

e In an asynchronous version of the method, the
aggregate costs R({) may be outdated to account
for communication “delays” between aggregate states.

e (Convergence can be shown using the general
theory of asynchronous distributed computation
(see the text).
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