6.231 DYNAMIC PROGRAMMING

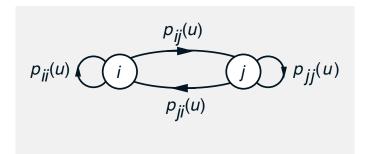
LECTURE 5

LECTURE OUTLINE

- Review of approximate PI
- Review of approximate policy evaluation based on projected Bellman equations
- Exploration enhancement in policy evaluation
- Oscillations in approximate PI
- Aggregation An alternative to the projected equation/Galerkin approach
- Examples of aggregation
- Simulation-based aggregation

DISCOUNTED MDP

- System: Controlled Markov chain with states i = 1, ..., n and finite set of controls $u \in U(i)$
- Transition probabilities: $p_{ij}(u)$



• Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$ starting at state i:

$$J_{\pi}(i) = \lim_{N \to \infty} E\left\{ \sum_{k=0}^{N} \alpha^{k} g(i_{k}, \mu_{k}(i_{k}), i_{k+1}) \mid i = i_{0} \right\}$$

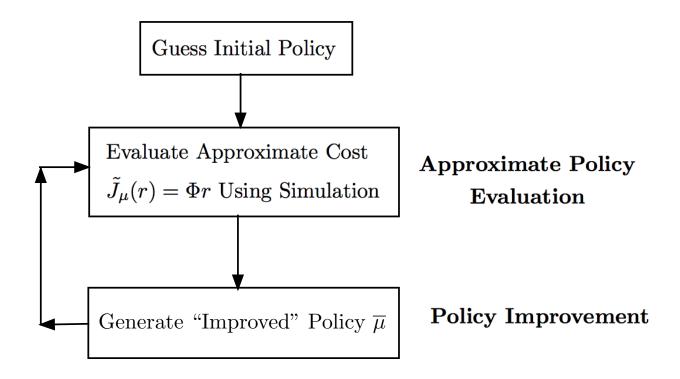
with $\alpha \in [0,1)$

• Shorthand notation for DP mappings

$$(TJ)(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J(j)), \quad i = 1, \dots, n,$$

$$(T_{\mu}J)(i) = \sum_{j=1}^{n} p_{ij}(\mu(i))(g(i,\mu(i),j) + \alpha J(j)), \quad i = 1,\dots, n$$

APPROXIMATE PI



• Evaluation of typical policy μ : Linear cost function approximation

$$\tilde{J}_{\mu}(r) = \Phi r$$

where Φ is full rank $n \times s$ matrix with columns the basis functions, and *i*th row denoted $\phi(i)'$.

• Policy "improvement" to generate $\overline{\mu}$:

$$\overline{\mu}(i) = \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \phi(j)'r \right)$$

EVALUATION BY PROJECTED EQUATIONS

• We discussed approximate policy evaluation by solving the projected equation

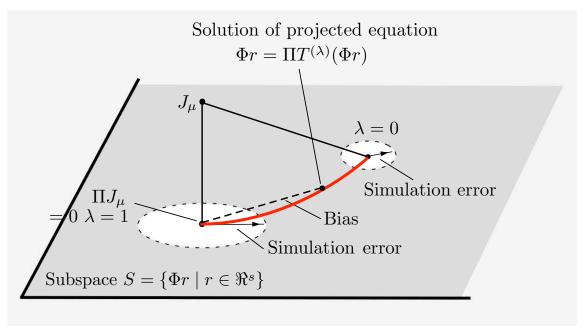
$$\Phi r = \Pi T_{\mu}(\Phi r)$$

 Π : projection with a weighted Euclidean norm

- Implementation by simulation (single long trajectory using current policy - important to make ΠT_{μ} a contraction). LSTD, LSPE methods.
- Multistep option: Solve $\Phi r = \Pi T_{\mu}^{(\lambda)}(\Phi r)$ with

$$T_{\mu}^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \lambda^{\ell} T_{\mu}^{\ell+1}$$

- As $\lambda \uparrow 1$, $\Pi T^{(\lambda)}$ becomes a contraction for any projection norm
- Bias-variance tradeoff



POLICY ITERATION ISSUES: EXPLORATION

- 1st major issue: exploration. To evaluate μ , we need to generate cost samples using μ
- This biases the simulation by underrepresenting states that are unlikely to occur under μ .
- As a result, the cost-to-go estimates of these underrepresented states may be highly inaccurate.
- This seriously impacts the improved policy $\overline{\mu}$.
- This is known as inadequate exploration a particularly acute difficulty when the randomness embodied in the transition probabilities is "relatively small" (e.g., a deterministic system).
- Common remedy is the off-policy approach: Replace P of current policy with a "mixture"

$$\overline{P} = (I - B)P + BQ$$

where B is diagonal with diagonal components in [0,1] and Q is another transition matrix.

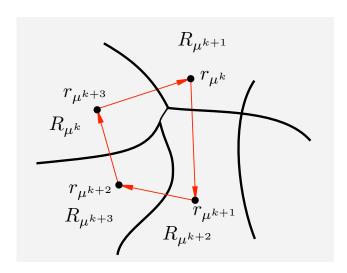
• LSTD and LSPE formulas must be modified ... otherwise the policy \overline{P} (not P) is evaluated. Related methods and ideas: importance sampling, geometric and free-form sampling (see the text).

POLICY ITERATION ISSUES: OSCILLATIONS

- 2nd major issue: oscillation of policies
- Analysis using the greedy partition: R_{μ} is the set of parameter vectors r for which μ is greedy with respect to $\tilde{J}(\cdot, r) = \Phi r$

$$R_{\mu} = \left\{ r \mid T_{\mu}(\Phi r) = T(\Phi r) \right\}$$

• There is a finite number of possible vectors r_{μ} , one generated from another in a deterministic way



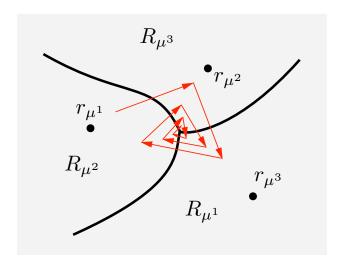
• The algorithm ends up repeating some cycle of policies $\mu^k, \mu^{k+1}, \dots, \mu^{k+m}$ with

$$r_{\mu^k} \in R_{\mu^{k+1}}, r_{\mu^{k+1}} \in R_{\mu^{k+2}}, \dots, r_{\mu^{k+m}} \in R_{\mu^k};$$

• Many different cycles are possible

MORE ON OSCILLATIONS/CHATTERING

• In the case of optimistic policy iteration a different picture holds



- Oscillations are less violent, but the "limit" point is meaningless!
- Fundamentally, oscillations are due to the lack of monotonicity of the projection operator, i.e., $J \leq J'$ does not imply $\Pi J \leq \Pi J'$.
- If approximate PI uses policy evaluation

$$\Phi r = (WT_{\mu})(\Phi r)$$

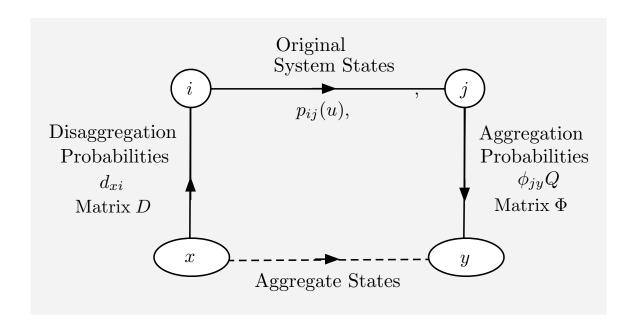
with W a monotone operator, the generated policies converge (to a possibly nonoptimal limit).

 \bullet The operator W used in the aggregation approach has this monotonicity property.

PROBLEM APPROXIMATION - AGGREGATION

- Another major idea in ADP is to approximate the cost-to-go function of the problem with the cost-to-go function of a simpler problem.
- The simplification is often ad-hoc/problem-dependent.
- Aggregation is a systematic approach for problem approximation. Main elements:
 - Introduce a few "aggregate" states, viewed as the states of an "aggregate" system
 - Define transition probabilities and costs of the aggregate system, by relating original system states with aggregate states
 - Solve (exactly or approximately) the "aggregate" problem by any kind of VI or PI method (including simulation-based methods)
 - Use the optimal cost of the aggregate problem to approximate the optimal cost of the original problem
- Hard aggregation example: Aggregate states are subsets of original system states, treated as if they all have the same cost.

AGGREGATION/DISAGGREGATION PROBS



- The aggregate system transition probabilities are defined via two (somewhat arbitrary) choices
- For each original system state j and aggregate state y, the aggregation probability ϕ_{jy}
 - Roughly, the "degree of membership of j in the aggregate state y."
 - In hard aggregation, $\phi_{jy} = 1$ if state j belongs to aggregate state/subset y.
- For each aggregate state x and original system state i, the disaggregation probability d_{xi}
 - Roughly, the "degree to which i is representative of x."
 - In hard aggregation, equal d_{xi}

AGGREGATE SYSTEM DESCRIPTION

• The transition probability from aggregate state x to aggregate state y under control u

$$\hat{p}_{xy}(u) = \sum_{i=1}^{n} d_{xi} \sum_{j=1}^{n} p_{ij}(u)\phi_{jy}, \text{ or } \hat{P}(u) = DP(u)\Phi$$

where the rows of D and Φ are the disaggregation and aggregation probs.

• The expected transition cost is

$$\hat{g}(x,u) = \sum_{i=1}^{n} d_{xi} \sum_{j=1}^{n} p_{ij}(u)g(i,u,j), \text{ or } \hat{g} = DPg$$

• The optimal cost function of the aggregate problem, denoted \hat{R} , is

$$\hat{R}(x) = \min_{u \in U} \left[\hat{g}(x, u) + \alpha \sum_{y} \hat{p}_{xy}(u) \hat{R}(y) \right], \quad \forall x$$

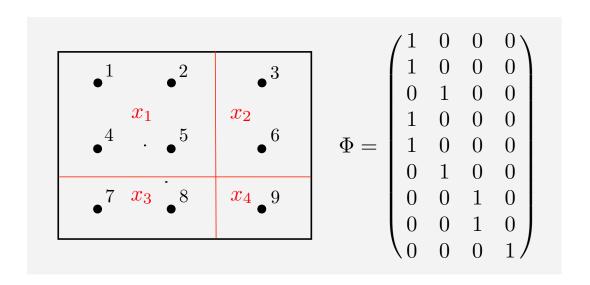
Bellman's equation for the aggregate problem.

• The optimal cost function J^* of the original problem is approximated by \tilde{J} given by

$$\tilde{J}(j) = \sum_{y} \phi_{jy} \hat{R}(y), \quad \forall j$$

EXAMPLE I: HARD AGGREGATION

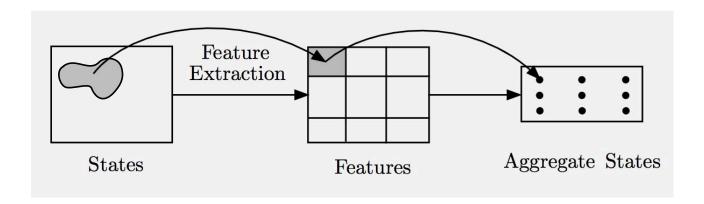
- Group the original system states into subsets, and view each subset as an aggregate state
- Aggregation probs.: $\phi_{jy} = 1$ if j belongs to aggregate state y.



- Disaggregation probs.: There are many possibilities, e.g., all states i within aggregate state x have equal prob. d_{xi} .
- If optimal cost vector J^* is piecewise constant over the aggregate states/subsets, hard aggregation is exact. Suggests grouping states with "roughly equal" cost into aggregates.
- A variant: Soft aggregation (provides "soft boundaries" between aggregate states).

EXAMPLE II: FEATURE-BASED AGGREGATION

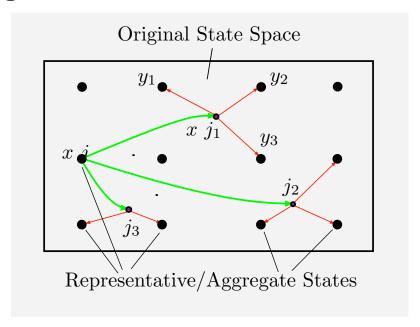
- Important question: How do we group states together?
- If we know good features, it makes sense to group together states that have "similar features"



- A general approach for passing from a featurebased state representation to an aggregation-based architecture
- Essentially discretize the features and generate a corresponding piecewise constant approximation to the optimal cost function
- Aggregation-based architecture is more powerful (nonlinear in the features)
- ... but may require many more aggregate states to reach the same level of performance as the corresponding linear feature-based architecture

EXAMPLE III: REP. STATES/COARSE GRID

• Choose a collection of "representative" original system states, and associate each one of them with an aggregate state



- Disaggregation probabilities are $d_{xi} = 1$ if i is equal to representative state x.
- Aggregation probabilities associate original system states with convex combinations of representative states

$$j \sim \sum_{y \in \mathcal{A}} \phi_{jy} y$$

- Well-suited for Euclidean space discretization
- Extends nicely to continuous state space, including belief space of POMDP

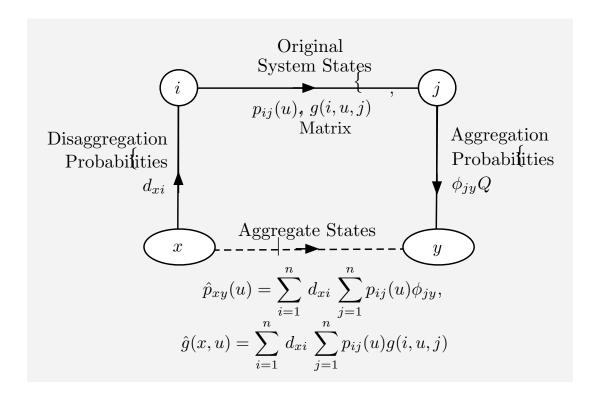
EXAMPLE IV: REPRESENTATIVE FEATURES

- Here the aggregate states are nonempty subsets of original system states (but need not form a partition of the state space)
- Example: Choose a collection of distinct "representative" feature vectors, and associate each of them with an aggregate state consisting of original system states with similar features

• Restrictions:

- The aggregate states/subsets are disjoint.
- The disaggregation probabilities satisfy $d_{xi} > 0$ if and only if $i \in x$.
- The aggregation probabilities satisfy $\phi_{jy} = 1$ for all $j \in y$.
- If every original system state *i* belongs to some aggregate state we obtain hard aggregation
- If every aggregate state consists of a single original system state, we obtain aggregation with representative states
- With the above restrictions $D\Phi = I$, so $(\Phi D)(\Phi D) = \Phi D$, and ΦD is an oblique projection (orthogonal projection in case of hard aggregation)

APPROXIMATE PI BY AGGREGATION



- Consider approximate policy iteration for the original problem, with policy evaluation done by aggregation.
- Evaluation of policy μ : $\tilde{J} = \Phi R$, where $R = DT_{\mu}(\Phi R)$ (R is the vector of costs of aggregate states for μ). Can be done by simulation.
- Looks like projected equation $\Phi R = \Pi T_{\mu}(\Phi R)$ (but with ΦD in place of Π).
- Advantages: It has no problem with exploration or with oscillations.
- Disadvantage: The rows of D and Φ must be probability distributions.

DISTRIBUTED AGGREGATION I

- We consider decomposition/distributed solution of large-scale discounted DP problems by aggregation.
- Partition the original system states into subsets S_1, \ldots, S_m
- Each subset S_{ℓ} , $\ell = 1, \ldots, m$:
 - Maintains detailed/exact local costs
 - J(i) for every original system state $i \in S_{\ell}$

using aggregate costs of other subsets

- Maintains an aggregate cost $R(\ell) = \sum_{i \in S_{\ell}} d_{\ell i} J(i)$
- Sends $R(\ell)$ to other aggregate states
- J(i) and $R(\ell)$ are updated by VI according to

$$J_{k+1}(i) = \min_{u \in U(i)} H_{\ell}(i, u, J_k, R_k), \qquad \forall i \in S_{\ell}$$

with R_k being the vector of $R(\ell)$ at time k, and

$$H_{\ell}(i, u, J, R) = \sum_{j=1}^{n} p_{ij}(u)g(i, u, j) + \alpha \sum_{j \in S_{\ell}} p_{ij}(u)J(j) + \alpha \sum_{j \in S_{\ell'}, \ell' \neq \ell} p_{ij}(u)R(\ell')$$

DISTRIBUTED AGGREGATION II

• Can show that this iteration involves a supnorm contraction mapping of modulus α , so it converges to the unique solution of the system of equations in (J, R)

$$J(i) = \min_{u \in U(i)} H_{\ell}(i, u, J, R), \quad R(\ell) = \sum_{i \in S_{\ell}} d_{\ell i} J(i),$$
$$\forall i \in S_{\ell}, \ \ell = 1, \dots, m.$$

- This follows from the fact that $\{d_{\ell i} \mid i = 1, \ldots, n\}$ is a probability distribution.
- View these equations as a set of Bellman equations for an "aggregate" DP problem. The difference is that the mapping H involves J(j) rather than R(x(j)) for $j \in S_{\ell}$.
- In an asynchronous version of the method, the aggregate costs $R(\ell)$ may be outdated to account for communication "delays" between aggregate states.
- Convergence can be shown using the general theory of asynchronous distributed computation (see the text).

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.