6.231 DYNAMIC PROGRAMMING
LECTURE 4

LECTURE OUTLINE

Review of approximation in value space
Approximate VI and PI

Projected Bellman equations

Matrix form of the projected equation
Simulation-based implementation
LSTD and LSPE methods

Optimistic versions

Multistep projected Bellman equations

Bias-variance tradeofl



DISCOUNTED MDP

e System: Controlled Markov chain with states
i =1,...,n and finite set of controls u € U (7)

e Transition probabilities: p;;(u)

pii(u)

LICONNNOLT

pji(u)

e Cost of a policy m = {uo, pt1,...} starting at
state ¢:

J(i) = lim E{Zakg(ik,uk(ik),ikﬂ) |fz—7;o}

N — o0
k=0

with o € [0,1)
e Shorthand notation for DP mappings



“SHORTHAND” THEORY - A SUMMARY

e DBellman’s equation: J* =TJ*, J, =1,J, or

n

J* (1) ZUEI%)ZPZJ(U)(Q(Z u,j) +aJ*(j), Vi

e Optimality condition:
p: optimal <==> 1T, ,J*=TJ*

le.,

c ; J)rad (), Vi
u(i) € arg min Zpg (9(i,u, j)+at*(j), Vi



THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any J € R»

J*(i) = lim (TkJ)(7), Vi=1,...,n

k— 00

e Policy iteration: Given u*
— Policy evaluation: Find J,» by solving

= > i (k) (9( 1" (1), 5) v (7)), i=1,...

or Jluk B TMszMk:

— Policy improvement: Let p*5+1 be such that

k—l—l . . .
/*L E argurenl}r(lz) pr 7’ u)])+a‘]uk (]))7 \V/Z

or Tlukz+1 J,u"“ = TJMI{:

e Policy evaluation is equivalent to solving an
n X n linear system of equations

e For large n, exact PI is out of the question
(even though it terminates finitely)

4



APPROXIMATION IN VALUE SPACE

e Approximate J* or J, from a parametric class
J(i,7), where 1 is the current state and r = (r1,...,7m)
is a vector of “tunable” scalars weights.

e By adjusting » we can change the “shape” of J
so that it is close to the true optimal J*.

e Any r € Rs defines a (suboptimal) one-step
lookahead policy

1(1) = arg min ; zu,'—l—aj , 7)), Vi1
fi(i) = arg min ij i+alt(j,r))

e We will focus mostly on linear architectures
J(r) = or

where ® i1s an n X s matrix whose columns are
viewed as basis functions

e Think n: HUGE, s: (Relatively) SMALL

e For J(r) = ®r, approximation in value space
means approximation of J* or J,, within the sub-
space

S={dr|r e Rs}



APPROXIMATE VI

e Approximates sequentially Jp (i) = (T%Jo)(4),
k=1,2,..., with Jx(¢,7%)

e The starting function Jy is given (e.g., Jop = 0)

o After alarge enough number N of steps, In (i, 7n)
is used as approximation J(¢,7) to J*(4)

e [Fitted Value Iteration: A sequential “fit” to

produce Jk+1 from Jg, i.e. , Jpr1 & T.J, or (for a
single policy ) Jry1 ~ T Jk

— For a “small” subset S; of states ¢, compute

— “Fit” the function ij(z', rr+1) to the “small”
set of values (T'Jx)(¢), © € Sk

— Simulation can be used for “model-free” im-
plementation

e [Error Bound: If the fit is uniformly accurate
within § > 0 (i.e., max; |Ji41(7) — Tk (2)] < 6),

- 2000
lim sup Z?ﬁ%n(”]k(i’m) Jx(i)) < i _Oéa)z
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AN EXAMPLE OF FAILURE

e (Consider two-state discounted MDP with states
1 and 2, and a single policy.

— Deterministic transitions: 1 — 2 and 2 — 2
— Transition costs = 0, so J*(1) = J*(2) = 0.

e (Consider approximate VI scheme that approxi-
mates cost functions in S = {(r,2r) | r € R} with

a weighted least squares fit; here ® = (;)

o Given Ji = (1, 2rk), we find Jg11 = (Tgr1, 2rk11),
where for weights &1,&2 > 0, 41 is obtained as

Th41 = argmin [51 (T—(Tjk)(l))2+§2 (QT_(TJR)(Q))Q}

e With straightforward calculation

re+1 = afrg,  where 8 = 2(&§1+282)/(§1+482) > 1

e So if a > 1/, the sequence {ry} diverges and
so does {Jx }.

e Difficulty is that T is a contraction, butll T
(= least squares fit composed with T') is not

e Norm mismatch problem
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APPROXIMATE PI

Guess Initial Policy

Evaluate Approximate Cost

: Approximate Policy
Ju(r) = ®r Using Simulation Evaluation

|

«— Generate “Improved” Policy 1 Policy Improvement

e [Evaluation of typical policy p: Linear cost func-
tion approximation ju(’r) — ®r, where & is full
rank n X s matrix with columns the basis func-
tions, and ith row denoted ¢(i)’.

e Policy “improvement” to generate fi:

fi(i) = arg Jmin, > pi(w) (g, u, §) + ad(j)'r)
j=1

e Lirror Bound: If

max | J (i, 7%) — Je (1) <6,  k=0,1,...
The sequence {u*} satisfies
2000
lim sup max(J,x (i) — J*()) < 1 _Oéa)z

L4
k— 00 v
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POLICY EVALUATION

e Let’s consider approximate evaluation of the
cost of the current policy by using simulation.

— Direct policy evaluation - Cost samples gen-
erated by simulation, and optimization by
least squares

— Indirect policy evaluation - solving the pro-
jected equation ®r = IIT,(Pr) where II is
projection w/ respect to a suitable weighted
Euclidean norm

J | To(®r)

| |

[ Projection

| Projection onS

on S I
I
I ®r = I1T,(Pr)
I1Jy,
0 0

S: Subspace spanned by basis functions S: Subspace spanned by basis functions
Direct Mehod: Projection of cost vector J, Indirect method: Solving a projected

form of Bellman’s equation

e Recall that projection can be implemented by
simulation and least squares



WEIGHTED EUCLIDEAN PROJECTIONS

e (Consider a weighted Euclidean norm

Wl =y > G(I0),

where £ is a vector of positive weights &1,...,&,.

e Let II denote the projection operation onto
S={Pr|reRs}
with respect to this norm, i.e., for any J € &,
IIJ = Pr*

where

r* = arg min

J — ®r||?
reRs T”g
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Pl WITH INDIRECT POLICY EVALUATION

Guess Initial Policy

'

Evaluate Approximate Cost

~ Approximate Policy
Ju(r) = ®r Using Simulation Evaluation

l

«— Generate “Improved” Policy Policy Improvement

e Given the current policy u:

— We solve the projected Bellman’s equation

¢r =117, (Pr)

— We approximate the solution J,, of Bellman’s
equation

J=T,J

with the projected equation solution .J, ()

1"



KEY QUESTIONS AND RESULTS

e Does the projected equation have a solution?

e Under what conditions is the mapping 1I7), a
contraction, so II7}, has unique fixed point?

e Assuming II7}, has unique fixed point ®r*, how
close is ®r* to J,,7

e Assumption: The Markov chain corresponding
to 1 has a single recurrent class and no transient
states, i.e., it has steady-state probabilities that
are positive

6 i, 3P o =) >

e Proposition: (Norm Matching Property)

(a) IIT,, is contraction of modulus « with re-
spect to the weighted Euclidean norm || - ||¢,
where & = (&1,...,&,) is the steady-state

probability vector.
(b) The unique fixed point ®r* of 117}, satisfies

1
V1 — a2
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PRELIMINARIES: PROJECTION PROPERTIES

e Important property of the projection II on S
with weighted Euclidean norm || - [|¢. For all J €
Rr, J €S, the Pythagorean Theorem holds:

|7 = Jlg =17 —ILJ||Z+ |ILT — J|Z

Proof: Geometrically, (J —IIJ) and ( ILJ— J) are
orthogonal in the scaled geometry of the norm || -
|¢, where two vectors z,y € R" are orthogonal
if Y &axiys = 0. Expand the quadratic in the
RHS below:

|7 = JlIg = I(J —ILT) + (ILT = J)]|3

e The Pythagorean Theorem implies that the pro-
jection is nonexpansive, 1.€.,

T — T1J ||¢ < || — J]|e, for all J, J € R7.
To see this, note that

|7 =7)|; < |0 =), + || -mT - T)|,
= ||J = JII?
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PROOF OF CONTRACTION PROPERTY

e [emma: If P is the transition matrix of u,
IPzlle < llzlle, 2z e Rn

Proof: Let p;; be the components of P. For all
z € 1™, we have

2

n n n n
P12 =36 | Y piz | <Y 6 w22
i=1 j=1 =1 j=1
n n n
= ZZ&pz‘jZJZ- = Zﬁjzjz' = HzH?a
j=1

j=1 i=1

where the inequality follows from the convexity of
the quadratic function, and the next to last equal-
ity follows from the defining property 2?21 EiDij =
¢; of the steady-state probabilities.

e Using the lemma, the nonexpansiveness of II,
and the definition 7},J = g + aPJ, we have

T, J-1T, I |le < |TuJ=TuJlle = al|P(J=J)]le < allJ-J||;

for all J,J € Rn. Hence IIT)is a contraction of
modulus a.
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PROOF OF ERROR BOUND

o Let® r* be the fixed point of IIT". We have

HJ,LL — (I)T*H&' < HJM - HJMHS-

1
V1 — a2
Proof: We have

[ = @2 = || T — T2 + ||TLT, — @+

Ils =

2
£

Jp — I |I2 + [T, — IIT(@r) |
Ty — T, 4 a2, — @r*|2,

VAN

where

— The first equality uses the Pythagorean The-
orem

— The second equality holds because J,, is the
fixed point of 1" and ®r* is the fixed point
of ITT

— The inequality uses the contraction property
of IIT".

Q.E.D.
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MATRIX FORM OF PROJECTED EQUATION

e Its solution is the vector J = ®r*, where r*
solves the problem

Or — (g + aPPr>) !Z

min
reRs

e Setting to 0 the gradient with respect to r of
this quadratic, we obtain

O'E(Pr* — (g + aPPr*)) =0,

where Z is the diagonal matrix with the steady-
state probabilities &1, ..., &, along the diagonal.

e This is just the orthogonality condition: The
error ®r* — (g + aP®r*) is “orthogonal” to the
subspace spanned by the columns of P.

e Lquivalently,
Cr* =d,

where
C == —aP)?, d=P'zg.
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PROJECTED EQUATION: SOLUTION METHODS

e Matrix inversion: r* = C~1d
e Projected Value Iteration (PVI) method:
(I)T’k_|_1 = HT((I)Tk) = H(g+ OéP(I)’I"k)

Converges to r* because 11T is a contraction.

Value lterate
T(®rk) =g + aPdrg

I .
Projection
onS

|
Dri+1

drg
0
S: Subspace spanned by basis functions

e PVI can be written as:

Tk4+1 = arg min

2
ety ¢r — (g + aPPry) Hg

By setting to 0 the gradient with respect to r,
O'E(Prpr1 — (g + aPPry)) =0,

which yields
Tk+1 = Tk — ((I)’E(I))_l(CTk — d)
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SIMULATION-BASED IMPLEMENTATIONS

e Key idea: Calculate simulation-based approxi-
mations based on k samples

Ck%C, dk%d

e Matrix inversion r* = (C'—1d is approximated
by

P = Oy tdy
This is the LSTD (Least Squares Temporal Dif-
ferences) Method.

e PVI method rg11 =1 — (P'Z2P)~1(Crp — d) is
approximated by

re+1 = 1y — Grp(Crry — di)
where
Gk ~ ((I)/E(I))_l

This is the LSPE (Least Squares Policy Evalua-
tion) Method.

o Key fact: Ck, di, and G can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).
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SIMULATION MECHANICS

e We generate an infinitely long trajectory (ig, i1, .. .)
of the Markov chain, so states ¢ and transitions
(4, 7) appear with long-term frequencies &; and p;;.

e After generating the transition (i:,i¢+1), we
compute the row ¢(i¢)’ of ® and the cost com-

ponent g(i¢, i¢41).

e We form

dy = k+ - Zgb it)g(it,itg1) ~ ®'Eg

Also in the case of LSPE

k
1
—_— ) y / ~ @/E
G, P ;:O d(it)P(it) P

e Convergence based on law of large numbers.

o (', di, and G can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)
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OPTIMISTIC VERSIONS

e Instead of calculating nearly exact approxima-
tions C}. ~ C and dp ~ d, we do a less accurate
approximation, based on few simulation samples

e Evaluate (coarsely) current policy u, then do a
policy improvement

e This often leads to faster computation (as op-
timistic methods often do)

e Very complex behavior (see the subsequent dis-
cussion on oscillations)

e The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling)

e LSPE tends to cope better because of its itera-
tive nature

e A stepsize v € (0,1] in LSPE may be useful to
damp the effect of simulation noise

ret+1 = 1k — YGr(Crry — di)
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MULTISTEP METHODS

e Introduce a multistep version of Bellman’s equa-
tion J = TN J, where for A € [0,1),
T = (1 -\ Z N1
(=0
Geometrically weighted sum of powers of T'.

e Note that T* is a contraction with modulus
at, with respect to the weighted Euclidean norm
|||, where & is the steady-state probability vector
of the Markov chain.

e Hence TV is a contraction with modulus

o

ay=(1—2N) Za“‘l)\e =
=0

Note that oy, —0as A — 1

e Tt and T have the same fixed point J, and

1
| = @rille < 5 [T — Il

where ®r} is the fixed point of IITM).
e The fixed point ®r} depends on A.
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BIAS-VARIANCE TRADEOFF

Solution of projected equation
Or = ITXN) (Pr)

Simulation error

_—'__"';-(’ o
)\:1>\ - = \ BlaS
e —‘\Simulation error

Subspace S = {®r | r € Rs}

e Error bound ||J, —®7} |l <

\/1%70& HJM_HJALHS
e As A 711, we have ay | 0, so error bound (and
the quality of approximation) improves as A 1 1.
In fact

lim &r} = I1J,

AT
e But the simulation noise in approximating

TO) = (1= X)) AT
¢=0

iIncreases

e Choice of A is usually based on trial and error
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MULTISTEP PROJECTED EQ. METHODS

e The projected Bellman equation is
Or = IIT) (Pr)

e In matrix form: CXMyr = d(M) | where
CH =d'=(I — aPWM)d, dN) = o'=gN),
with

P = (1-)\) Z QNP1 (N = Z at M Pty
=0 £=0
e The LSTD(A) method is

(@),

where C’,?) and d,(c’\) are simulation-based approx-
imations of C*) and dM).

e The LSPE()) method is
Tk+1 = Tk — ’}/Gk (C,S\)Tk — Clgj\))

where GG, is a simulation-based approx. to (®/=d)—1

e TD()): An important simpler/slower iteration
[similar to LSPE(\) with Gy = I - see the text].
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MORE ON MULTISTEP METHODS

e The simulation process to obtain Cl(j‘) and d,(;‘)
is similar to the case A = 0 (single simulation tra-

jectory ig, 1, ... more complex formulas)
|k k
A . ) /
Oy = =g D) Y am =t (g(im) —ad(imt1))
t=0 m=t

k k
(A) m—t)\m—t .
k ]C + 1 tz:; ¢ Zt Tnz::t& 9inm,

e In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

e Many different versions (see the text).

e Note the )\-tradeoffs:

— As A1 1, Cl(c/\) and d,(;\) contain more “sim-
ulation noise”, so more samples are needed
for a close approximation of ry (the solution
of the projected equation)

— The error bound ||.J,—®ry||¢ becomes smaller

— As A 1 1.II TN becomes a contraction for
arbitrary projection norm
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