
APPROXIMATE DYNAMIC PROGRAMMIN

LECTURE 3

LECTURE OUTLINE

• Review of theory and algorithms for discounted
DP

• MDP and stochastic shortest path problems
(briefly)

• Introduction to approximation in policy and
value space

• Approximation architectures

• Simulation-based approximate policy iteration

• Approximate policy iteration and Q-factors

• Direct and indirect approximation

• Simulation issues

G
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DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

N−1

J k
π(x0) = lim E α g xk, µk(xk), wk

N→∞ wk
k=0,1,...

{

k

∑

=0

}

( )

with α < 1, and for someM , we have |g(x, u, w)| ≤
M for all (x, u, w)

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x
u∈U(x) w

{ ( )}

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ

• For any stationary policy µ

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x
w

{ ( ) ( )}
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MDP - TRANSITION PROBABILITY NOTATION

• Assume the system is an n-state (controlled)
Markov chain

• Change to Markov chain notation

− States i = 1, . . . , n (instead of x)

− Transition probabilities pikik+1(uk) [instead
of xk+1 = f(xk, uk, wk)]

− Stage cost g(ik, uk, ik+1) [instead of g(xk, uk, wk)]

• Cost of a policy π = {µ0, µ1, . . .}
{

N−1

Jπ(i) = lim E
∑

αkg
(

ik, µk(ik), ik+1

)

| i0 = i
N→∞ ik

k=1,2,... k=0

• Shorthand notation for DP mappings

n

(TJ)(i) = min
∑

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,
u∈U(i)

j=1

n

(TµJ)(i) =
∑

pij
(

µ(i)
)(

g
(

i, µ(i), j
j=1

)

+αJ(j)
)

, i = 1, . . . , n

}
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“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions [with J0(i) ≡ 0]

Jπ(i) = lim (T T k
µ0 µ · · ·1 Tµk

J0)(i), Jµ(i) = lim (TµJ0)(i)
k→∞ k→∞

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

n

J∗(i) = min
u∈U(i)

∑

p (u)
(

g(i, u, j)+αJ∗
ij (j)

j=1

)

, ∀ i

n

Jµ(i) =
∑

pij µ(i) g i, µ(i), j + αJµ(j) , i
j=1

( )( ( ) )

∀

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

n

µ(i) ∈ arg min
∑

pij(u) g(i, u, j)+αJ∗(j) ,
u∈U(i)

j=1

∀ i
( )
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THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ,n

J∗(i) = lim (T kJ)(i),
k→∞

∀ i = 1, . . . , n

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

n

Jµk (i) =
∑

p k k
ij

(

µ (i)
)(

g
(

i, µ (i), j
)

+αJµk (j)
)

, i = 1, . . . , n
j=1

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

n

µk+1(i) ∈ arg min
∑

pij(u)
(

g(i, u, j)+αJµk (j)
u∈U(i)

j=1

)

, ∀ i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving an
n× n linear system of equations

• For large n, exact PI is out of the question
(even though it terminates finitely)
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STOCHASTIC SHORTEST PATH (SSP) PROBLEM

• Involves states i = 1, . . . , n plus a special cost-
free and absorbing termination state t

• Objective: Minimize the total (undiscounted)
cost. Aim: Reach t at minimum expected cost

S

• An example: Tetris




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SSP THEORY

• SSP problems provide a “soft boundary” be-
tween the easy finite-state discounted problems
and the hard undiscounted problems.

− They share features of both.

− Some of the nice theory is recovered because
of the termination state.

• Definition: A proper policy is a stationary
policy that leads to t with probability 1

• If all stationary policies are proper, T and
Tµ are contractions with respect to a common
weighted sup-norm

• The entire analytical and algorithmic theory for
discounted problems goes through if all stationary
policies are proper (we will assume this)

• There is a strong theory even if there are im-
proper policies (but they should be assumed to be
nonoptimal - see the textbook)
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GENERAL ORIENTATION TO ADP

• We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

• Extensions to SSP and average cost are possible
(but more quirky). We will set aside for later.

• There are many approaches:

− Manual/trial-and-error approach

− Problem approximation

− Simulation-based approaches (we will focus
on these): “neuro-dynamic programming”
or “reinforcement learning”.

• Simulation is essential for large state spaces
because of its (potential) computational complex-
ity advantage in computing sums/expectations in-
volving a very large number of terms.

• Simulation also comes in handy when an ana-
lytical model of the system is unavailable, but a
simulation/computer model is possible.

• Simulation-based methods are of three types:

− Rollout (we will not discuss further)

− Approximation in value space

Approximation in policy space−
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APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i, r) where i is the current state and r = (r1, . . . , rm
is a vector of “tunable” scalars weights.

• By adjusting r we can change the “shape” of J̃
so that it is reasonably close to the true optimal
J∗.

• Two key issues:

− The choice of parametric class J̃(i, r) (the
approximation architecture).

− Method for tuning the weights (“training”
the architecture).

• Successful application strongly depends on how
these issues are handled, and on insight about the
problem.

• A simulator may be used, particularly when
there is no mathematical model of the system (but
there is a computer model).

• We will focus on simulation, but this is not the
only possibility [e.g., J̃(i, r) may be a lower bound
approximation based on relaxation, or other prob-
lem approximation]

)
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APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J̃(i, r) on r].

• Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer.

• Computer chess example: Uses a feature-based
position evaluator that assigns a score to each
move/position.

Features:
Material balance,
Mobility,
Safety, etc

Feature Weighting Score
Extraction of Features

Position Evaluator

• Many context-dependent special features.

• Most often the weighting of features is linear
but multistep lookahead is involved.

• In chess, most often the training is done by trial
and error.

10
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LINEAR APPROXIMATION ARCHITECTURES

• Ideally, the features encode much of the nonlin-
earity inherent in the cost-to-go approximated

• Then the approximation may be quite accurate
without a complicated architecture.

• With well-chosen features, we can use a linear
architecture: J̃(i, r) = φ(i)′r, i = 1, . . . , n, or more
compactly

J̃(r) = Φr
Φ: the matrix whose rows are φ(i)′, i = 1, . . . , n

• This is approximation on the subspace

S = {Φr | r ∈ ,s}
spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, kernels of
all sorts, interpolation, and special problem-specific
(as in chess and tetris)

Feature Extraction Mapping Feature Vector
Approximator

i Mapping Feature Vector
Approximator ( )Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)
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State i Feature Extraction Mapping Feature Vector
Approximator

i Feature Extraction Mapping Feature Vector
Approximator ( )Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

Feature Extraction Mapping Feature Vector φ(i) Linear Cost
i) Linear Cost

i) Linear Cost
Approximator φ(i)′r



APPROXIMATION IN POLICY SPACE

• A brief discussion; we will return to it at the
end.

• We parameterize the set of policies by a vector
r = (r1, . . . , rs) and we optimize the cost over r

• Discounted problem example:

− Each value of r defines a stationary policy,
with cost starting at state i denoted by J̃(i; r).

− Use a random search, gradient, or other method
to minimize over r

n

J̄(r) =
∑

piJ̃(i; r),
i=1

where (p1, . . . , pn) is some probability distri-
bution over the states.

• In a special case of this approach, the param-
eterization of the policies is indirect, through an
approximate cost function.

− A cost approximation architecture parame-
terized by r, defines a policy dependent on r
via the minimization in Bellman’s equation.
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APPROX. IN VALUE SPACE - APPROACHES

• Approximate PI (Policy evaluation/Policy im-
provement)

− Uses simulation algorithms to approximate
the cost Jµ of the current policy µ

− Projected equation and aggregation approaches

• Approximation of the optimal cost function J∗

− Q-Learning: Use a simulation algorithm to
approximate the optimal costs J∗(i) or the
Q-factors

n

Q∗(i, u) = g(i, u) + α
∑

pij(u)J∗(j)
j=1

− Bellman error approach: Find r to

2
minEi

{

(

J̃(i, r)− (T J̃)(i, r)
r

)

}

where Ei{·} is taken with respect to some
distribution

− Approximate LP (we will not discuss here)
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APPROXIMATE POLICY ITERATION

• General structure

System Simulator

Decision Generator
) Decision µ(i) S

Cost-to-Go Approximatorn Generator
r Supplies Values J̃(j, r) D

Cost Approximation
n Algorithm

J̃(j, r)

State i

) Samples

D
Cost-to-Go Approx

r
roximator Supplies Valur

S
State Cost Approximation

ecisio

i A

C

r

• J(j, r) is the cost approximation for the pre-
ceding policy, used by the decision generator to
compute the current policy µ [whose cost is ap-
proximated by J̃(j, r) using simulation]

• There are several cost approximation/policy
evaluation algorithms

• There are several important issues relating to
the design of each block (to be discussed in the

˜

future).
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POLICY EVALUATION APPROACHES I

• Direct policy evaluation

• Approximate the cost of the current policy by
using least squares and simulation-generated cost
samples

• Amounts to projection of Jµ onto the approxi-
mation subspace

Subspace S = {Φr | r ∈ "s}

Jµ

ΠJµ

Direct Method: Projection of
cost vector Jµ

Set

Direct Method: Projection of cost vector Π

µ

cost vector
Direct Method: Projection of

• Solution of the least squares problem by batch
and incremental methods

• Regular and optimistic policy iteration

Nonlinear approximation architectures may also•
be used 15
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POLICY EVALUATION APPROACHES II

• Indirect policy evaluation
Value Iterate Value Iterate

T(Φrk) = g + αPΦrk T(Φrk) = g + αPΦrk

Projection Projection
on S on S

Φrk+1
Φrk+1

Φrk Φrk Simulation error
0 0

S: Subspace spanned by basis functions S: Subspace spanned by basis functions

Projected Value Iteration (PVI) Least Squares Policy Evaluation (LSPE)

• An example of indirect approach: Galerkin ap-
proximation

− Solve the projected equation Φr = ΠTµ(Φr)
where Π is projection w/ respect to a suit-
able weighted Euclidean norm

− TD(λ): Stochastic iterative algorithm for solv-
ing Φr = ΠTµ(Φr)

− LSPE(λ): A simulation-based form of pro-
jected value iteration

Φrk+1 = ΠTµ(Φrk) + simulation noise

− LSTD(λ): Solves a simulation-based approx-
imation w/ a standard solver (Matlab)
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POLICY EVALUATION APPROACHES III

• Aggregation approximation: Solve

Φr = ΦDTµ(Φr)

where the rows of D and Φ are prob. distributions
(e.g., D and Φ “aggregate” rows and columns of
the linear system J = TµJ).

pij(u),

dxi φjy

i

x y

Original
System States

Aggregate States

p̂xy(u) =
n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation

Probabilities

Aggregation

Probabilities

ĝ(x, u) =
n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)according to with cost

S

= 1

), ),

System States Aggregate States

{

Original Aggregate States

{

|

Original System States

Probabilities

{

Aggregation
Disaggregation Probabilities

Probabilities
Disaggregation Probabilities

{

Aggregation
Disaggregation Probabilities

Matrix

• Several different choices of D and Φ.
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POLICY EVALUATION APPROACHES IV

pij(u),

dxi φjy

i

x y

Original
System States

Aggregate States

p̂xy(u) =
n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation

Probabilities

Aggregation

Probabilities

ĝ(x, u) =
n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)according to with cost

S

= 1

), ),

System States Aggregate States

{

Original Aggregate States

{

|

Original System States

Probabilities

{

Aggregation
Disaggregation Probabilities

Probabilities
Disaggregation Probabilities

{

Aggregation
Disaggregation Probabilities

Matrix

• Aggregation is a systematic approach for prob-
lem approximation. Main elements:

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

• Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach

18
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THEORETICAL BASIS OF APPROXIMATE PI

• If policies are approximately evaluated using an
approximation architecture such that

max |J̃(i, rk)− Jµk(i)
i

| ≤ δ, k = 0, 1, . . .

• If policy improvement is also approximate,

max |(Tµk+1 J̃)(i, rk) (
i

− T J̃)(i, rk)| ≤ ε, k = 0, 1, . . .

• Error bound: The sequence {µk} generated by
approximate policy iteration satisfies

ε+ 2αδ
lim supmax

(

Jµk(i)
ik→∞

− J∗(i)
)

≤
(1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.
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THE USE OF SIMULATION - AN EXAMPLE

• Projection by Monte Carlo Simulation: Com-
pute the projectionΠ J of a vector J ∈ ,n on
subspace S = {Φr | r ∈ ,s}, with respect to a
weighted Euclidean norm ‖ · ‖ξ.

• Equivalently, findΦ r∗, where
n

2
r∗ = arg min ‖Φr−J‖2 = arg min

∑

ξ
(

φ(i)′iξ r (i
∈'s r∈'

i=1

−J )
r s

• Setting to 0 the gradient at r∗,

)

r∗ =

( −1n n
∑

ξiφ(i)φ(i)′

i=1

)

∑

ξiφ(i)J(i)
i=1

• Approximate by simulation the two “expected
values”

r̂k =

( −1k k
∑

φ(i (i ′
t)φ t)

t=1

)

∑

φ(it)J(it)
t=1

• Equivalent least squares alternative:
k

2
r̂k = arg min φ(it)′r J(it)

r∈'s
−

∑

t=1

( )
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THE ISSUE OF EXPLORATION

• To evaluate a policy µ, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under µ.

• As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate.

• This seriously impacts the improved policy µ.

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system).

• One possibility for adequate exploration: Fre-
quently restart the simulation and ensure that the
initial states employed form a rich and represen-
tative subset.

• Another possibility: Occasionally generate tran-
sitions that use a randomly selected control rather
than the one dictated by the policy µ.

• Other methods, to be discussed later, use two
Markov chains (one is the chain of the policy and
is used to generate the transition sequence, the
other is used to generate the state sequence).
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APPROXIMATING Q-FACTORS

• The approach described so far for policy eval-
uation requires calculating expected values [and
knowledge of pij(u)] for all controls u ∈ U(i).

• Model-free alternative: Approximate Q-factors

n

Q̃(i, u, r) ≈
∑

pij(u)
j=1

(

g(i, u, j) + αJµ(j)
)

and use for policy improvement the minimization

µ(i) = arg min Q̃(i, u, r)
u∈U(i)

• r is an adjustable parameter vector and Q̃(i, u, r)
is a parametric architecture, such as

s

Q̃(i, u, r) =
∑

rmφm(i, u)
m=1

• We can use any approach for cost approxima-
tion, e.g., projected equations, aggregation.

• Use the Markov chain with states (i, u) - pij(µ(i))
is the transition prob. to (j, µ(i)), 0 to other (j, u′).

Major concern: Acutely diminished exploration.•
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