APPROXIMATE DYNAMIC PROGRAMMING
LECTURE 2
LECTURE OUTLINE

e Review of discounted problem theory
e Review of shorthand notation

e Algorithms for discounted DP

e Value iteration

e Policy iteration

e Optimistic policy iteration

e ()-factors and Q-learning

e A more abstract view of DP

e Extensions of discounted DP

e Value and policy iteration

e Asynchronous algorithms



DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system with arbitrary state space

Lk+1 :f(:ck,uk,wk), k:O,l,...

e Cost of a policy m = {uo, 1, ...}

N-1
Jr(xg) = lim F {Zoﬂ“ Tk, i (Tk ), Wi }

N —o0 W
k=0,1,... k=0

with a < 1, and for some M, we have |g(z, u, w)| <
M for all (:U U, W)

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(T'J)(x) = min E{g T, U w)+aJ(f(a:,u,w))}, Vax

uweU(x) w

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J.

e For any stationary policy

(T, )(@) = B {g (e, n(@),w) + ad (f (@, u(@),w) } Vo



“SHORTHAND” THEORY - A SUMMARY

e Cost function expressions [with Jo(x) = 0]
Jr(x) = lim (T Ty, -+ Ty Jo) (@), Ju(z) = lim (T Jo)(x)

k— oo k— oo

e DBellman’s equation: J* =T1TJ*, J, =1T,J, or

Ju(x) = g {g(x,,u(:c),w) - aJM(f(x,,u(:c),w))} , Vo
e Optimality condition:

p: optimal <==> T, ,J*=TJ*
l.e.,

p(z) € arg H%]i?)E{g(fE,u,w) +aJ*(f(z,u,w))}, Va
ucU () w

e Value iteration: For any (bounded) J

J*(x) = lim (T*kJ)(x), vV x

k— 00
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MAJOR PROPERTIES

e Monotonicity property: For any functions J and
J’ on the state space X such that J(x) < J'(x)
for all x € X, and any p

(TJ)(z) < (TJ')(x), (TuJ)(x) < (TpJ')(z), Voe X

e (ontraction property: For any bounded func-
tions J and J’, and any pu,

mgx’(TJ)(x) —(TJ")(z)| < Oém:?X’J(QZ') — J'(z)],
mgx‘(TMJ)(a:)—(TMJ’)(a:)’ < amgx‘J(x)—J’(:v)’.
e (Compact Contraction Notation:

fTT=TJ'|| < aflJ=T"||, [T =TpJ'|| < allJ=J|,

where for any bounded function J, we denote by
|J|| the sup-norm

7] = ma|J ()]
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THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any (bounded) J

J*(x) = lim (TkJ)(x), vV x

k— 00

e Policy iteration: Given u*
— Policy evaluation: Find J,» by solving

k() = E{g(x,,u(a:),w) +ad (f(a:,,uk(:c),w))}, Vo

or e]lukz — Tukjluk
— Policy improvement: Let puf+1 be such that
k+1 :
p () Earguénl}&)g{g(x,u,w)JraJuk (f(:c,u,w))}, Vi
or Tluk+1 Jlukz — TJMk:

e For finite state space policy evaluation is equiv-
alent to solving a linear system of equations

e Dimension of the system is equal to the number
of states.

e For large problems, exact PI is out of the ques-
tion (even though it terminates finitely)
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INTERPRETATION OF VI AND PI
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JUSTIFICATION OF POLICY ITERATION

e We can show that J kw1 < J,x for all k

e Proof: For given k, we have

Tluk+1<],uk — TJMk: < Tluke]luk = Jukz

Using the monotonicity property of DP,

Sy 2 Tyern e > T2 Jye > -0 > Hm T T

N — o0

e Since

lim T]\,Z_,_lj k —J k41
N — o0

we have Sy = e

o If J,» = Jk+1, then J » solves Bellman’s equa-

tion and is therefore equal to J*

e So at iteration k either the algorithm generates
a strictly improved policy or it finds an optimal
policy

e For a finite spaces MDP, there are finitely many
stationary policies, so the algorithm terminates
with an optimal policy



APPROXIMATE PI

e Suppose that the policy evaluation is approxi-
mate,

| Je — Ju|| <0, k=0,1,...
and policy improvement is approximate,
HT/,LkﬂLljk _TJkH < €, ]CZO,l,...

where 0 and € are some positive scalars.

e Frror Bound I: The sequence {u*} generated
by approximate policy iteration satisfies

€ + 2a0
limsup (|Jx — J*|| <
msup [, — I < G

e 'T'ypical practical behavior: The method makes
steady progress up to a point and then the iterates

J = oscillate within a neighborhood of J*.

e Frror Bound II: If in addition the sequence {u*}
terminates at u,

e + 2a0
1 — «

| — J*[| <
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OPTIMISTIC POLICY ITERATION

e Optimistic PI (more efficient): This is PI, where
policy evaluation is done approximately, with a
finite number of VI

e So we approximate the policy evaluation
J, =TT

for some number m € [1, 00)

e Shorthand definition: For some integers m

Tpdy =TJx,  Jeyr =TTk, k=0,1,...

o If mp =1 it becomes VI
o If mir = oo it becomes PI

e Can be shown to converge (in an infinite number
of iterations)



Q-LEARNING 1

e We can write Bellman’s equation as

J* — . * Y Y \v/ Y
() = min Q(x,u) x

where (Q* is the unique solution of

velU(x)

Q*(z,u) = FE {g(x,u, w) + «a min Q*(E,v)}

with ¥ = f(x, u, w)
o (Q*(x,u) is called the optimal Q-factor of (z,u)

e We can equivalently write the VI method as

Jrt1(x) = uglUla) Qr+1(T,u), Vo,

where (Qr11 is generated by
vel (T)

Qi) = B{ o uw) +a min Qu(z.o) |

with T = f(x, u, w)
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Q-LEARNING 11

e ()-factors are no different than costs

e They satisfy a Bellman equation () = F'() where

vel (T)

(FQ)(x,u) = E {g(x, w,w) +a min Q(, v)}

where T = f(x,u,w)

e VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs

e They require equal amount of computation ...
they just need more storage

e Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

pr(x) = ug}&@ (%, u)

e Once Q*(x,u) are known, the model |g and
FEA{-}] is not needed. Model-free operation.

e Later we will see how stochastic/sampling meth-
ods can be used to calculate (approximations of)

Q*(x,u) using a simulator of the system (no model
needed) "



A MORE GENERAL/ABSTRACT VIEW

e Let Y be a real vector space with a norm || - ||

e A function F':Y — Y is said to be a contrac-
tion mapping if for some p € (0,1), we have

|Fy — Fz|| < plly — =[], forally,zeY.

p is called the modulus of contraction of F.

e Important example: Let X be a set (e.g., state
space in DP), v : X +— R be a positive-valued
function. Let B(X) be the set of all functions

J : X — R such that J(z)/v(x) is bounded over
x.

e We define a norm on B(X), called the weighted
sup-norm, by

)
171} = max =5

e Important special case: The discounted prob-
lem mappings T and T, [for v(z) =1, p = a].
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A DP-LIKE CONTRACTION MAPPING

o Let X ={1,2,...},and let F': B(X) — B(X)
be a linear mapping of the form

(FI)(@) =bi+ Y ayJ(), Vi=12,...

jeX

where b; and a;; are some scalars. Then F'is a
contraction with modulus p if and only if

D iex laij|v(j)
v(i)

< p, Vi=1,2,...

e Let FF: B(X) +— B(X) be a mapping of the
form

(FD)(0) = min(E,J)(0),  Vi=12,..

where M is parameter set, and for each u € M,
F), is a contraction mapping from B(X) to B(X)
with modulus p. Then F'is a contraction mapping
with modulus p.

e Allows the extension of main DP results from
bounded cost to unbounded cost.
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CONTRACTION MAPPING FIXED-POINT TH.

e (Contraction Mapping Fixed-Point Theorem: If
F : B(X) — B(X) is a contraction with modulus
p € (0,1), then there exists a unique J* € B(X)
such that

J* = FJ*.

Furthermore, if J is any function in B(X), then
{FkJ} converges to J* and we have

e This is a special case of a general result for
contraction mappings F' : Y — Y over normed
vector spaces Y that are complete: every sequence
{yr} that is Cauchy (satisfies ||ym — yn|| — 0 as
m,n — 00) converges.

e The space B(X) is complete (see the text for a
proof).
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GENERAL FORMS OF DISCOUNTED DP

e We consider an abstract form of DP based on
monotonicity and contraction

e Abstract Mapping: Denote R(X): set of real-

valued functions J : X — R, and let H : X x U X
R(X) — R be a given mapping. We consider the

mapping

(TJ)(x) = min H(x,u,J), VrelX.
uel (x)

e We assume that (T'J)(z) > —oo for all x € X,
so T maps R(X) into R(X).

e Abstract Policies: Let M be the set of “poli-
cies”, i.e., functions p such that u(x) € U(z) for
all z € X.

e For each u € M, we consider the mapping
T, : R(X)— R(X) defined by

(TuJ)(x) = H (2, p(x), J), VarelX.
e Find a function J* € R(X) such that

J*(x) = min H(xz,u,J*), VeelX
uelU(x)
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EXAMPLES

e Discounted problems (and stochastic shortest
paths-SSP for @ = 1)

H(ZC,U, ‘]) — E{g(a},u,w) + OéJ(f(ZC, u, ’U}))}
e Discounted Semi-Markov Problems

H(z,u,J)=G(z,u —I—mey

where mg, are “discounted” transition probabili-
ties, defined by the transition distributions

e Shortest Path Problems

aru + J(u) if u # d,
H(:U,u,,]):{ad (u) ifuid

where d is the destination. There is also a stochas-
tic version of this problem.

e Minimax Problems

H(w,u )= max [g(e,ww)tal (f(r,uww))
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ASSUMPTIONS

e Monotonicity assumption: If J, J’ € R(X) and
J < J’, then

H(x,u,J) < H(z,u,J), Vee X, ueU(x)

e (ontraction assumption:

— For every J € B(X), the functions 7},J and
T'J belong to B(X).

— For some a € (0,1), and all 4 and J,J’ €
B(X), we have

1T =T J'|| < aflJ =]

e We can show all the standard analytical and
computational results of discounted DP based on
these two assumptions

e With just the monotonicity assumption (as in
the SSP or other undiscounted problems) we can
still show various forms of the basic results under
appropriate assumptions
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RESULTS USING CONTRACTION

e Proposition 1: The mappings 7, and 1" are
weighted sup-norm contraction mappings with mod-
ulus a over B(X), and have unique fixed points

in B(X), denoted J,, and J*, respectively (cf.
Bellman’s equation).

Proof: From the contraction property of H.

e Proposition 2: For any J € B(X) and u € M,

lim THJ = J,, lim TkJ = J*

k— 00 k— 00

(cf. convergence of value iteration).

Proof: From the contraction property of 7, and
T.

e Proposition 3: We have 1), J* = T'J* if and
only if J, = J* (cf. optimality condition).

Proof: 71, J* = TJ*, then T, J* = J*, implying
J* = J,. Conversely, it J, = J*, then T, J* =
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RESULTS USING MON. AND CONTRACTION

e Optimality of fixed point:

J*(a:)z;gij\r}lju(a:), VeelX

e Furthermore, for every € > 0, there exists u. €
M such that

J(x) < Ju. (x) < J*(z) + €, VeelX

e Nonstationary policies: Consider the set II of
all sequences m = {uo, p1, ...} with up € M for
all k£, and define

Jr(x) = Hminf (T, Ty, - Ty, J) (), VaelX,

k— 00

with J being any function (the choice of J does
not matter)

e We have

J*(a:)zgrngllrilJﬁ(x), VeelX
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THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any (bounded) J

J*(x) = lim (TkJ)(x), Vx
k— o0
e Policy iteration: Given u*
— Policy evaluation: Find J,» by solving

Jp=T

M MkJMk

— Policy improvement: Find p*+1 such that
Tprrd e =TT

e Optimistic PI: This is PI, where policy evalu-
ation is carried out by a finite number of VI

— Shorthand definition: For some integers my

TMka =T Jg, Jr+1 :T:Zka, k=20,1,...

— If mp =1 it becomes VI
— If my = oo it becomes PI

— For intermediate values of my, it is generally
more efficient than either VI or PI
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ASYNCHRONOUS ALGORITHMS

e Motivation for asynchronous algorithms
— Faster convergence
— Parallel and distributed computation

— Simulation-based implementations

e (General framework: Partition X into disjoint
nonempty subsets Xi,...,X,,, and use separate
processor ¢ updating J(x) for x € X,

e Let J be partitioned as

J=(J1,. .., JIm),
where Jy is the restriction of J on the set X,.

e Synchronous algorithm:
I ) =T, ..., ) (2), v€Xp, £=1,...,m

e Asynchronous algorithm: For some subsets of
times Ry,

T () = T g WY ) ift e Ry,
¢ Jt(z) if t & Ry

where t — 74;(t) are communication “delays”
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ONE-STATE-AT-A-TIME ITERATIONS

e Important special case: Assume n “states”, a
separate processor for each state, and no delays

e Generate a sequence of states {x0,x1,...}, gen-
erated in some way, possibly by simulation (each
state is generated infinitely often)

e Asynchronous VI:

[T IO =t
¢ J} if ¢ # at,

where T'(J},...,J})(£) denotes the ¢-th compo-
nent of the vector

T(Jt,...,J5) =TJt,

and for simplicity we write J/} instead of J}(¢)

e The special case where
{0, 21, ...} ={1,...,n,1,...,n,1,...}

is the Gauss-Seidel method

e We can show that Jt — J* under the contrac-
tion assumption
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ASYNCHRONOUS CONV. THEOREM 1

e Assume that forallé,j =1,...,m, Ry is infinite
and limy—, o0 7¢; () = 00

e Proposition: Let T" have a unique fixed point J*,
and assume that there is a sequence of nonempty

subsets {S(k)} C R(X) with S(k+ 1) C S(k) for
all £, and with the following properties:

(1) Synchronous Convergence Condition: Ev-
ery sequence {J*} with J* € S(k) for each
k, converges pointwise to J*. Moreover, we
have

TJe S(k+1), VYJeS(k),k=01,....

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = 51(k) x -+ x Sp(k),

where Sy(k) is a set of real-valued functions
on Xy, {=1,...,m.

Then for every J € S(0), the sequence {J!} gen-
erated by the asynchronous algorithm converges
pointwise to J*.
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ASYNCHRONOUS CONV. THEOREM 11

e Interpretation of assumptions:

—_

J = (J1,J2)

52(0) Sk+1) eJ* Tjj :

S1(0)

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

e (Convergence mechanism:

J1 Iterations
A

\\ J = (Ji1, o)
Sk+1) eJ* Y |
S(k)
S(0)
Jo Iteration
Key: “Independent” component-wise improve-

ment. An asynchronous component iteration from
any J in S(k) moves into the corresponding com-
ponent portion of S(k + 1)
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