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APPROXIMATE DYNAMIC PROGRAMMING
 

BRIEF OUTLINE I
 

• Our subject: 

− Large-scale DP based on approximations and 
in part on simulation. 

− This has been a research area of great inter­
est for the last 25 years known under various 
names (e.g., reinforcement learning, neuro­
dynamic programming) 

− Emerged through an enormously fruitful cross-
fertilization of ideas from artificial intelligence 
and optimization/control theory 

− Deals with control of dynamic systems under 
uncertainty, but applies more broadly (e.g., 
discrete deterministic optimization) 

− A vast range of applications in control the­
ory, operations research, artificial intelligence, 
and beyond ... 

− The subject is broad with rich variety of 
theory/math, algorithms, and applications. 
Our focus will be mostly on algorithms ... 
less on theory and modeling 
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APPROXIMATE DYNAMIC PROGRAMMING
 

BRIEF OUTLINE II
 

• Our aim: 

− A state-of-the-art account of some of the ma­
jor topics at a graduate level 

− Show how to use approximation and simula­
tion to address the dual curses of DP: di­
mensionality and modeling 

• Our 6-lecture plan: 

− Two lectures on exact DP with emphasis on 
infinite horizon problems and issues of large­
scale computational methods 

− One lecture on general issues of approxima­
tion and simulation for large-scale problems 

− One lecture on approximate policy iteration 
based on temporal differences (TD)/projected 
equations/Galerkin approximation 

− One lecture on aggregation methods 

− One lecture on Q-learning, and other meth­
ods, such as approximation in policy space 
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APPROXIMATE DYNAMIC PROGRAMMING
 

LECTURE 1
 

LECTURE OUTLINE
 

• Introduction to DP and approximate DP 

• Finite horizon problems 

• The DP algorithm for finite horizon problems
 

• Infinite horizon problems 

• Basic theory of discounted infinite horizon prob­
lems 
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DP AS AN OPTIMIZATION METHODOLOGY
 

•	 Generic optimization problem: 

min g(u) 
u∈U 

where u is the optimization/decision variable, g(u) 
is the cost function, and U is the constraint set 

• Categories of problems: 

− Discrete (U is finite) or continuous 

− Linear (g is linear and U is polyhedral) or 
nonlinear 

− Stochastic or deterministic: In stochastic prob­
lems the cost involves a stochastic parameter 
w, which is averaged, i.e., it has the form 

 	  

g(u) = Ew G(u,w)

where w is a random parameter. 

•	 DP deals with multistage stochastic problems 

− Information about w is revealed in stages 

− Decisions are also made in stages and make 
use of the available information 

− Its methodology is “different”
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BASIC STRUCTURE OF STOCHASTIC DP
 

• Discrete-time system 

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 

− k: Discrete time 

− xk: State; summarizes past information that 
is relevant for future optimization 

− uk: Control; decision to be selected at time 
k from a given set 

− wk: Random parameter (also called “distur­
bance” or “noise” depending on the context) 

− N : Horizon or number of times control is 
applied 

• Cost function that is additive over time 

  


N−1
 

E gN (xN ) + gk(xk, uk, wk)
k=0 

• Alternative system description: P (xk+1 | xk, uk) 

xk+1 = wk with P (wk | xk, uk) = P (xk+1 | xk, uk) 
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INVENTORY CONTROL EXAMPLE
 

• Discrete-time system 

xk+1 = fk(xk, uk, wk) = xk + uk − wk 

• Cost function that is additive over time
 

N−1 

E gN (xN ) + gk(xk, uk, wk) 
k=0 

N−1 
  

= E cuk + r(xk + uk − wk)
k=0

{

∑

}

{

∑

}
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ADDITIONAL ASSUMPTIONS
 

• Probability distribution of wk does not depend 
on past values wk−1, . . . , w0, but may depend on 
xk and uk 

− Otherwise past values of w, x, or u would be 
useful for future optimization 

• The constraint set from which uk is chosen at 
time k depends at most on xk, not on prior x or 
u 

• Optimization over policies (also called feedback 
control laws): These are rules/functions 

uk = µk(xk), k = 0, . . . , N − 1 

that map state/inventory to control/order (closed­
loop optimization, use of feedback) 

• MAJOR DISTINCTION: We minimize over se­
quences of functions (mapping inventory to order)
 

{µ0, µ1, . . . , µN−1} 

NOT over sequences of controls/orders 

{u0, u1, . . . , uN−1}
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GENERIC FINITE-HORIZON PROBLEM
 

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N −1 

• Control contraints uk ∈ Uk(xk) 

• Probability distribution Pk(· | xk, uk) of wk 

• Policies π = {µ0, . . . , µN−1}, where µk maps 
states xk into controls uk = µk(xk) and is such 
that µk(xk) ∈ Uk(xk) for all xk 

• Expected cost of π starting at x0 is 

N−1 

Jπ(x0) = E gN (xN ) + gk(xk, µk(xk), wk)
 
k=0
 

• Optimal cost function 

J∗(x0) = min Jπ(x0)
π 

• Optimal policy π∗ satisfies 

Jπ∗ (x0) = J∗(x0) 

When produced by DP, π∗ is independent of x0.
 

{

∑

}
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PRINCIPLE OF OPTIMALITY
 

∗ ∗ ∗• Let π∗ = {µ0, µ 1, . . . , µ } be optimal policy N−1

• Consider the “tail subproblem” whereby we are 
at xk at time k and wish to minimize the “cost­
to-go” from time k to time N 

N−1 

E gN (xN ) + gℓ xℓ, µℓ(xℓ), wℓ 

ℓ=k 

∗ ∗ ∗and the “tail policy” {µ , µ k+1, . . . , µ }k N−1

Tail Subproblem 
x
k 

k N Time 

• Principle of optimality: The tail policy is opti­
mal for the tail subproblem (optimization of the
 
future does not depend on what we did in the past)
 

• DP solves ALL the tail subroblems 

• At the generic step, it solves ALL tail subprob­
lems of a given time length, using the solution of 
the tail subproblems of shorter time length 

{

∑

( )

}
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DP ALGORITHM
 

• Computes for all k and states xk: 

Jk(xk): opt. cost of tail problem starting at xk 

• Initial condition: 

JN (xN ) = gN (xN ) 

Go backwards, k = N − 1, . . . , 0, using 

Jk(xk) = min E gk(xk, uk, wk) 
uk ∈Uk (xk) wk 

+ Jk+1 fk(xk, uk, wk) , 

• To solve tail subproblem at time k minimize 

kth-stage cost + Opt. cost of next tail problem 

starting from next state at time k + 1 

• Then J0(x0), generated at the last step, is equal 
to the optimal cost J∗(x0). Also, the policy 

∗ ∗π∗ = {µ0, . . . , µ }N−1


∗
where µ (xk) minimizes in the right side above for k

each xk and k, is optimal 

• Proof by induction 

{

( )}
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PRACTICAL DIFFICULTIES OF DP
 

• The curse of dimensionality 

− Exponential growth of the computational and 
storage requirements as the number of state 
variables and control variables increases 

− Quick explosion of the number of states in 
combinatorial problems 

• The curse of modeling 

− Sometimes a simulator of the system is easier 
to construct than a model 

• There may be real-time solution constraints 

− A family of problems may be addressed. The 
data of the problem to be solved is given with 
little advance notice 

− The problem data may change as the system
 
is controlled – need for on-line replanning
 

• All of the above are motivations for approxi­
mation and simulation 
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A MAJOR IDEA: COST APPROXIMATION
 

• Use a policy computed from the DP equation 
where the optimal cost-to-go function Jk+1 is re­
placed by an approximation J̃k+1. 

• Apply µk(xk), which attains the minimum in 

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) 
uk ∈Uk (xk ) 

• Some approaches: 

(a) Problem Approximation: Use J̃k derived from 
a related but simpler problem 

(b) Parametric Cost-to-Go Approximation: Use 
˜as Jk a function of a suitable parametric 

form, whose parameters are tuned by some 
heuristic or systematic scheme (we will mostly 
focus on this) 

− This is a major portion of Reinforcement 
Learning/Neuro-Dynamic Programming 

˜(c)	 Rollout Approach: Use as Jk the cost of 
some suboptimal policy, which is calculated 
either analytically or by simulation 

(

)
)
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ROLLOUT ALGORITHMS
 

• At each k and state xk, use the control µk(xk) 
that minimizes in 

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) , 
uk ∈Uk (xk ) 

where J̃k+1 is the cost-to-go of some heuristic pol­
icy (called the base policy). 

• Cost improvement property: The rollout algo­
rithm achieves no worse (and usually much better) 
cost than the base policy starting from the same 
state. 

• Main difficulty: Calculating J̃k+1(x) may be 
computationally intensive if the cost-to-go of the 
base policy cannot be analytically calculated. 

− May involve Monte Carlo simulation if the 
problem is stochastic. 

− Things improve in the deterministic case (an 
important application is discrete optimiza­
tion). 

− Connection w/ Model Predictive Control (MPC). 

{ ( )}
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INFINITE HORIZON PROBLEMS
 

• Same as the basic problem, but: 

− The number of stages is infinite. 

− The system is stationary. 

• Total cost problems: Minimize 

N−1 

Jπ(x0) = lim E αkg xk, µk(xk), wk 
N→∞ wk 

k=0,1,... k=0 

− Discounted problems (α < 1, bounded g) 

− Stochastic shortest path problems (α = 1, 
finite-state system with a termination state) 
- we will discuss sparringly 

− Discounted and undiscounted problems with 
unbounded cost per stage - we will not cover 

• Average cost problems - we will not cover 

• Infinite horizon characteristics: 

− Challenging analysis, elegance of solutions 
and algorithms 

− Stationary policies π = {µ, µ, . . .} and sta­
tionary forms of DP play a special role 

{

∑

( )

}
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DISCOUNTED PROBLEMS/BOUNDED COST
 

• Stationary system 

xk+1 = f(xk, uk, wk), k = 0, 1, . . . 

• Cost of a policy π = {µ0, µ1, . . .} 

N−1 

Jπ(x0) = lim E αkg xk, µk(xk), wk 
N→∞ wk 

k=0,1,... k=0 

with α < 1, and g is bounded [for some M , we 
have |g(x, u, w)| ≤ M for all (x, u, w)] 

• Optimal cost function: J∗(x) = minπ Jπ(x) 

• Boundedness of g guarantees that all costs are
 
  

 ≤ Mwell-defined and bounded:  Jπ(x) 1−α 

• All spaces are arbitrary - only boundedness of
 
g is important (there are math fine points, e.g.
 
measurability, but they don’t matter in practice)
 

• Important special case: All underlying spaces 
finite; a (finite spaces) Markovian Decision Prob­
lem or MDP 

• All algorithms ultimately work with a finite
 
spaces MDP approximating the original problem
 

{

∑

)

}
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SHORTHAND NOTATION FOR DP MAPPINGS
 

• For any function J of x, denote 

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x 
u∈U(x) w 

• TJ is the optimal cost function for the one­
stage problem with stage cost g and terminal cost 
function αJ . 

• T operates on bounded functions of x to pro­
duce other bounded functions of x 

• For any stationary policy µ, denote 

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x 
w 

• The critical structure of the problem is cap­
tured in T and Tµ 

• The entire theory of discounted problems can 
be developed in shorthand using T and Tµ 

• True for many other DP problems. 

• T and Tµ provide a powerful unifying framework 
for DP. This is the essence of the book “Abstract 
Dynamic Programming” 

{ ( )}

{ ( ) ( )}
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FINITE-HORIZON COST EXPRESSIONS 

• Consider anN -stage policy πN = {µ0, µ1, . . . , µN−1}0 

1

with a terminal cost J : 

N−1 

JπN 

+ αJπN 

0
(x0) = E αNJ(xk) + αℓg xℓ, µℓ(xℓ), wℓ
 

ℓ=0
 

g x0, µ0(x0), w0
 (x1)
= E
 

JπN 
1

= {µ1, µ2, . . . , µN−1} 

(Tµ0
 )(x0)
= 

where π1 
N 

• By induction we have
 

( )J xNπ
0
 

= (Tµ0 Tµ1 · · · TµN−1 J)(x), ∀ x
 

0 

• For a stationary policy µ the N -stage cost func­
tion (with terminal cost J) is 

JπN = Tµ
NJ
 

where Tµ
N is the N -fold composition of Tµ 

• Similarly the optimal N -stage cost function 
(with terminal cost J) is TNJ 

• TNJ = T (TN−1J) is just the DP algorithm 

{

∑

( )

}

{

( )

}
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“SHORTHAND” THEORY – A SUMMARY
 

• Infinite horizon cost function expressions [with 
J0(x) ≡ 0] 

Jπ(x) = lim (Tµ0 Tµ1 · · · TµN J0)(x), Jµ(x) = lim (Tµ
NJ0)(x) 

N→∞ N→∞ 

∗ ∗• Bellman’s equation: J = TJ , Jµ = TµJµ 

• Optimality condition: 

∗ ∗ µ: optimal <==> TµJ = TJ

•	 Value iteration: For any (bounded) J 

J∗(x) = lim (T kJ)(x), ∀ x 
k→∞ 

•	 Policy iteration: Given µk, 

− Policy evaluation: Find J by solving kµ

J = T k J kkµ µ µ


− Policy improvement: Find µk+1 such that
 

T k+1 J	 k = TJ kµ µ µ
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TWO KEY PROPERTIES
 

′• Monotonicity property: For any J and J such 
that J(x) ≤ J ′ (x) for all x, and any µ 

(TJ)(x) ≤ (TJ ′ )(x), ∀ x, 

(TµJ)(x) ≤ (TµJ ′ )(x), ∀ x. 

• Constant Shift property: For any J , any scalar 
r, and any µ 

T (J + re) (x) = (TJ)(x) + αr, ∀ x,
 

Tµ(J + re) (x) = (TµJ)(x) + αr, ∀ x, 

where e is the unit function [e(x) ≡ 1]. 

• Monotonicity is present in all DP models (undis­
counted, etc) 

• Constant shift is special to discounted models
 

• Discounted problems have another property 
of major importance: T and Tµ are contraction 
mappings (we will show this later) 

( )

( )
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CONVERGENCE OF VALUE ITERATION
 

• For all bounded J , 

J∗(x) = lim (T kJ)(x), for all x 
k→∞ 

Proof: For simplicity we give the proof for J ≡ 0. 
For any initial state x0, and policy π = {µ0, µ1, . . .}, 

∞ 

Jπ(x0) = E αℓg xℓ, µℓ(xℓ), wℓ
 

ℓ=0
 

k−1
 

= E αℓg xℓ, µℓ(xℓ), wℓ
 

ℓ=0
 

∞ 

+ E αℓg xℓ, µℓ(xℓ), wℓ 

ℓ=k 

The tail portion satisfies 

∞ 

αkM 
E αℓg xℓ, µℓ(xℓ), wℓ ≤ ,

1− α
ℓ=k 

where M ≥ |g(x, u, w)|. Take min over π of both 
sides, then lim as k → ∞. Q.E.D. 

{

∑

(

( )
)

}

{

∑

(

( )
)

}

{

∑

(

( )
)

}

∣

∣

∣

∣

∣

{

∑

(

( )
)

}
∣

∣

∣

∣

∣
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BELLMAN’S EQUATION
 

∗• The optimal cost function J is a solution of
 
∗Bellman’s equation, J = TJ∗, i.e., for all x, 

∗J∗(x) = min E g(x, u, w) + αJ f(x, u, w) 
u∈U(x) w 

Proof: For all x and k, 

αkM αkM 
J∗(x)− ≤ (T kJ0)(x) ≤ J∗(x) + ,

1− α 1− α

where J0(x) ≡ 0 and M ≥ |g(x, u, w)|. Applying 
T to this relation, and using Monotonicity and 
Constant Shift, 

αk+1M
 
(TJ∗)(x)− ≤ (T k+1J0)(x)


1− α 

αk+1M 
≤ (TJ∗)(x) + 

1− α 

Taking the limit as k → ∞ and using the fact 

lim (T k+1J0)(x) = J∗(x) 
k→∞ 

∗ ∗we obtain J = TJ . Q.E.D.
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THE CONTRACTION PROPERTY
 

• Contraction property: For any bounded func­
tions J and J ′ , and any µ, 

max (TJ)(x)− (TJ ′ )(x) ≤ αmax J(x)− J ′ (x) , 
x x 

max (TµJ)(x)−(TµJ ′ )(x) ≤ αmax J(x)−J ′(x) . 
x x 

Proof: Denote c = maxx∈S J(x)− J ′ (x) . Then 

J(x)− c ≤ J ′ (x) ≤ J(x) + c, ∀ x 

Apply T to both sides, and use the Monotonicity 
and Constant Shift properties: 

(TJ)(x)−αc ≤ (TJ ′ )(x) ≤ (TJ)(x)+αc, ∀ x 

Hence 

(TJ)(x)− (TJ ′ )(x) ≤ αc, ∀ x. 

Q.E.D. 

∗• Note: This implies that J is the unique solu­
∗tion of J = TJ∗, and Jµ is the unique solution 

of 

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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NEC. AND SUFFICIENT OPT. CONDITION
 

• A stationary policy µ is optimal if and only if 
µ(x) attains the minimum in Bellman’s equation 
for each x; i.e., 

∗ ∗TJ = TµJ ,
 

or, equivalently, for all x,
 

∗ µ(x) ∈ arg min E g(x, u, w) + αJ f(x, u, w)
 
u∈U(x) w 

∗Proof: If TJ = TµJ∗, then using Bellman’s equa­
∗tion (J = TJ∗), we have 

∗ ∗J = TµJ , 

so by uniqueness of the fixed point of Tµ, we obtain 
∗J = Jµ; i.e., µ is optimal. 

• Conversely, if the stationary policy µ is optimal,
 
∗we have J = Jµ, so 

∗ ∗J = TµJ . 

∗Combining this with Bellman’s Eq. (J = TJ∗), 
∗ ∗we obtain TJ = TµJ . Q.E.D. 

{ ( )}
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APPROXIMATE DYNAMIC PROGRAMMING
 

LECTURE 2
 

LECTURE OUTLINE
 

• Review of discounted problem theory 

• Review of shorthand notation 

• Algorithms for discounted DP 

• Value iteration 

• Various forms of policy iteration 

• Optimistic policy iteration 

• Q-factors and Q-learning 

• Other DP models - Continuous space and time
 

• A more abstract view of DP 

• Asynchronous algorithms 
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DISCOUNTED PROBLEMS/BOUNDED COST
 

• Stationary system with arbitrary state space 

xk+1 = f(xk, uk, wk), k = 0, 1, . . . 

• Cost of a policy π = {µ0, µ1, . . .} 

  

N−1
 

  

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk 

k=0,1,... k=0 

with α < 1, and for someM , we have |g(x, u, w)| ≤
 
M for all (x, u, w) 

• Shorthand notation for DP mappings (operate
 
on functions of state to produce other functions)
 

    

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x 
u∈U(x) w

TJ is the optimal cost function for the one-stage 
problem with stage cost g and terminal cost αJ . 

• For any stationary policy µ 

      

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x 
w

26



    

      

    

“SHORTHAND” THEORY – A SUMMARY
 

• Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ or 

J∗(x) = min E g(x, u, w) + αJ∗ f(x, u, w) , ∀ x 
u∈U(x) w 

Jµ(x) =	 E g x, µ(x), w + αJµ f(x, µ(x), w) , ∀ x 
w 

• Optimality condition: 

µ: optimal <==> TµJ∗ = TJ∗ 

i.e., 

µ(x) ∈ arg min E g(x, u, w) + αJ∗ f(x, u, w) , ∀ x 
u∈U(x) w 

•	 Value iteration: For any (bounded) J 

J∗(x) = lim (T kJ)(x), ∀ x 
k→∞ 

•	 Policy iteration: Given µk, 

− Find J k from J k = T kJ (policy evalua­kµ	 µ µ µ

tion); then
 

− Find µk+1 such that T k+1 J k = TJ k (pol­µ µ µ

icy improvement) 

{

g(x, u, w) + αJ∗
(

f(x, u, w)
)}

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)}

{

( )
(

f(x, u, w)
)}
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MAJOR PROPERTIES
 

• Monotonicity property: For any functions J and 
′J on the state space X such that J(x) ≤ J ′(x) 

for all x ∈ X, and any µ 

(TJ)(x) ≤ (TJ ′)(x), (TµJ)(x) ≤ (TµJ ′)(x), ∀ x ∈ X 

• Contraction property: For any bounded func­
tions J and J ′, and any µ, 

    


max  (TJ)(x)− (TJ ′)(x) ≤ αmax  J(x)− J ′(x) , 
x x

    


 max  (TµJ)(x)− (TµJ ′)(x) ≤ αmax  J(x)−J ′(x)
x x

• Compact Contraction Notation:
 

ITJ−TJ ′I ≤ αIJ−J ′I, ITµJ−TµJ ′I ≤ αIJ−J ′I,
 

where for any bounded function J , we denote by
 
IJI the sup-norm
 

  

 IJI = max  J(x)

x
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THE TWO MAIN ALGORITHMS: VI AND PI
 

• Value iteration: For any (bounded) J 

J∗(x) = lim (T kJ)(x), ∀ x 
k→∞ 

•	 Policy iteration: Given µk 

− Policy evaluation: Find J by solving kµ

J	 k (x) = E g x, µ 
k(x), w + αJ k f(x, µ 

k(x), w) , ∀ xµ	 µ
w 

or	 J = T kJ kkµ µ µ

− Policy improvement: Let µk+1 be such that 

µ 
k+1(x) ∈ arg min E g(x, u, w) + αJ k f(x, u, w) , ∀ xµ

u∈U(x) w 

or	 T k+1 J = TJ kkµ µ µ

• For the case of n states, policy evaluation is 
equivalent to solving an n × n linear system of 
equations: Jµ = gµ + αPµJµ 

• For large n, exact PI is out of the question (even 
though it terminates finitely as we will show) 

{

g
(

x, µ
k(x), w

)

+ αJµk

(

f(x, µk(x), w)
)}

{

g(x, u, w) + αJµk

(

f(x, u, w)
)}
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JUSTIFICATION OF POLICY ITERATION
 

• We can show that J k ≥ J k+1 for all kµ µ

• Proof: For given k, we have 

J = T kJ k ≥ TJ k = T k+1 Jk kµ µ µ µ µ µ

Using the monotonicity property of DP, 

J k ≥ T k+1 J k ≥ T 2 J k ≥ · · · ≥ lim TN J kµ µ µ k+1 µ k+1 µµ µN→∞ 

• Since 
lim T

µ
N 
k+1 Jµk = Jµk+1 

N→∞ 

we have J k ≥ J k+1 .µ µ

• If J = J k+1 , all above inequalities hold kµ µ

as equations, so J solves Bellman’s equation.
 kµ

Hence Jµk = J∗ 

• Thus at iteration k either the algorithm gen­
erates a strictly improved policy or it finds an op­
timal policy 

− For a finite spaces MDP, the algorithm ter­
minates with an optimal policy 

− For infinite spaces MDP, convergence (in an 
infinite number of iterations) can be shown 
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OPTIMISTIC POLICY ITERATION
 

• Optimistic PI: This is PI, where policy evalu­
ation is done approximately, with a finite number 
of VI 

• So we approximate the policy evaluation 

mJµ ≈ Tµ J 

for some number m ∈ [1,∞) and initial J 

• Shorthand definition: For some integers mk 

mkTµkJk = TJk, Jk+1 = T k Jk, k = 0, 1, . . . 
µ

• If mk ≡ 1 it becomes VI 

• If mk = ∞ it becomes PI 

• Converges for both finite and infinite spaces 
discounted problems (in an infinite number of it­
erations) 

• Typically works faster than VI and PI (for 
large problems) 
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APPROXIMATE PI
 

• Suppose that the policy evaluation is approxi­
mate, 

IJk − JµkI ≤ δ, k = 0, 1, . . . 

and policy improvement is approximate, 

ITµk+1 Jk − TJkI ≤ ǫ, k = 0, 1, . . . 

where δ and ǫ are some positive scalars. 

• Error Bound I: The sequence {µk} generated 
by approximate policy iteration satisfies 

ǫ+ 2αδ 
lim sup IJ k − J∗I ≤ µ
k→∞ (1− α)2 

• Typical practical behavior: The method makes 
steady progress up to a point and then the iterates 
Jµk oscillate within a neighborhood of J∗ . 

• Error Bound II: If in addition the sequence {µk} 
“terminates” at µ (i.e., keeps generating µ) 

ǫ+ 2αδ 
IJµ − J∗I ≤ 

1− α 
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Q-FACTORS I
 

• Optimal Q-factor of (x, u):
 

Q∗(x, u) = E {g(x, u, w) + αJ∗(x)} 

with x = f(x, u, w). It is the cost of starting at x, 
applying u is the 1st stage, and an optimal policy 
after the 1st stage 

• We can write Bellman’s equation as 

J∗(x) = min Q∗(x, u), ∀ x, 
u∈U(x) 

• We can equivalently write the VI method as 

Jk+1(x) = min Qk+1(x, u), ∀ x, 
u∈U(x) 

where Qk+1 is generated by 

Qk+1(x, u) = E g(x, u, w) + α min Qk(x, v) 
v∈U(x) 

with x = f(x, u, w)
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Q-FACTORS II
 

• Q-factors are costs in an “augmented” problem 
where states are (x, u) 

• They satisfy a Bellman equation Q∗ = FQ∗ 

where 

(FQ)(x, u) = E g(x, u, w) + α min Q(x, v)
 
v∈U(x) 

where x = f(x, u, w) 

• VI and PI for Q-factors are mathematically 
equivalent to VI and PI for costs 

• They require equal amount of computation ... 
they just need more storage 

• Having optimal Q-factors is convenient when 
implementing an optimal policy on-line by 

µ ∗(x) = min Q∗(x, u) 
u∈U(x) 

• Once Q∗(x, u) are known, the model [g and 
E{·}] is not needed. Model-free operation 

• Q-Learning (to be discussed later) is a sampling 
method that calculates Q∗(x, u) using a simulator 
of the system (no model needed) 

{ }
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OTHER DP MODELS
 

• We have looked so far at the (discrete or con­
tinuous spaces) discounted models for which the
 
analysis is simplest and results are most powerful
 

• Other DP models include: 

− Undiscounted problems (α = 1): They may 
include a special termination state (stochas­
tic shortest path problems) 

− Continuous-time finite-state MDP: The time 
between transitions is random and state-and­
control-dependent (typical in queueing sys­
tems, called Semi-Markov MDP). These can 
be viewed as discounted problems with state­
and-control-dependent discount factors 

• Continuous-time, continuous-space models: Clas­
sical automatic control, process control, robotics 

− Substantial differences from discrete-time 

− Mathematically more complex theory (par­
ticularly for stochastic problems) 

− Deterministic versions can be analyzed using 
classical optimal control theory 

− Admit treatment by DP, based on time dis­
cretization 35



  

  

    

  

    

  

CONTINUOUS-TIME MODELS
 

• System equation: dx(t)/dt = f x(t), u(t) 
 

∞
• Cost function: g x(t), u(t)

0 

• Optimal cost starting from x: J∗(x) 

• δ-Discretization of time: xk+1 = xk+δ·f(xk, uk) 

• Bellman equation for the δ-discretized problem: 

Jδ 
∗(x) = min δ · g(x, u) + Jδ 

∗ x + δ · f(x, u) 
u 

• Take δ → 0, to obtain the Hamilton-Jacobi-
Bellman equation [assuming limδ→0 J

∗(x) = J∗(x)] δ 

0 = min g(x, u) +∇J∗(x)′f(x, u) , ∀ x 
u 

• Policy Iteration (informally): 

− Policy evaluation: Given current µ, solve 

0 = g x, µ(x) +∇Jµ(x)′f x, µ(x) , ∀ x 

− Policy improvement: Find 

µ(x) ∈ argmin g(x, u)+∇Jµ(x)′f(x, u) , ∀ x 
u 

• Note: Need to learn ∇Jµ(x) NOT Jµ(x)
 

(t)/dt = f
(

x(t), u(t)
)

(

x(t), u(t)
)

∗(x)

e: xk+1 = xk+δ·f(xk, uk)

J∗

δ (x) = min
u

{

δ · g(x, u) + J∗

δ

(

x+ δ · f(x, u)
)}

mδ→0 J
∗

δ (x) = J∗(x)]

0 = min
u

{

g(x, u) +∇J∗(x)′f(x, u)
}

,

0 = g
(

x, µ(x)
)

+∇Jµ(x)′f
(

x, µ(x)
)

,

µ(x) ∈ argmin
u

{

g(x, u)+∇Jµ(x)′f(x, u)
}

,
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A MORE GENERAL/ABSTRACT VIEW OF DP
 

• Let Y be a real vector space with a norm I · I
 

• A function F : Y  → Y is said to be a contrac­
tion mapping if for some ρ ∈ (0, 1), we have 

IFy − FzI ≤ ρIy − zI, for all y, z ∈ Y.
 

ρ is called the modulus of contraction of F . 

• Important example: Let X be a set (e.g., state
 
space in DP), v : X  → ℜ be a positive-valued
 
function. Let B(X) be the set of all functions
 
J : X  → ℜ such that J(x)/v(x) is bounded over
 
x. 

• We define a norm on B(X), called the weighted
 
sup-norm, by 

|J(x)|
IJI = max .
 

x∈X v(x) 

• Important special case: The discounted prob­
lem mappings T and Tµ [for v(x) ≡ 1, ρ = α]. 
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CONTRACTION MAPPINGS: AN EXAMPLE
 

• Consider extension from finite to countable state 
space, X = {1, 2, . . .}, and a weighted sup norm 
with respect to which the one stage costs are bounded 

• Suppose that Tµ has the form 

(TµJ)(i) = bi + α aij J(j), ∀ i = 1, 2, . . .
 
j∈X
 

where bi and aij are some scalars. Then Tµ is a 
contraction with modulus ρ if and only if 

L

j∈X |aij | v(j) 
≤ ρ, ∀ i = 1, 2, . . . 

v(i) 

• Consider T , 

(TJ)(i) = min (TµJ)(i), ∀ i = 1, 2, . . . 
µ 

where for each µ ∈ M , Tµ is a contraction map­
ping with modulus ρ. Then T is a contraction 
mapping with modulus ρ 

• 

∑

j∈X

38

Allows extensions of main DP results from
bounded one-stage cost to interesting unbounded
one-stage cost cases.



CONTRACTION MAPPING FIXED-POINT TH.
 

• Contraction Mapping Fixed-Point Theorem: If
 
F : B(X) B(X) is a contraction with modulus 
ρ ∈ (0, 1), then there exists a unique J∗ ∈ B(X) 
such that 

J∗ = FJ∗ . 

Furthermore, if J is any function in B(X), then 
{F kJ} converges to J∗ and we have 

IF kJ − J∗I ≤ ρkIJ − J∗I, k = 1, 2, . . . . 

• This is a special case of a general result for 
contraction mappings F : Y  → Y over normed 
vector spaces Y that are complete: every sequence 
{yk} that is Cauchy (satisfies Iym − ynI → 0 as 
m,n → ∞) converges. 

• The space B(X) is complete (see the text for a 
proof). 

7→
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ABSTRACT FORMS OF DP
 

• We consider an abstract form of DP based on 
monotonicity and contraction 

• Abstract Mapping: Denote R(X): set of real­
valued functions J : X  → ℜ, and let H : X ×U × 
R(X)  → ℜ be a given mapping. We consider the 
mapping 

(TJ)(x) = min H(x, u, J), ∀ x ∈ X.
 
u∈U(x) 

• We assume that (TJ)(x) > −∞ for all x ∈ X, 
so T maps R(X) into R(X). 

• Abstract Policies: Let M be the set of “poli­
cies”, i.e., functions µ such that µ(x) ∈ U(x) for 
all x ∈ X. 

• For each µ ∈ M, we consider the mapping 
Tµ : R(X) R(X) defined by 

(TµJ)(x) = H x, µ(x), J , ∀ x ∈ X. 

• Find a function J∗ ∈ R(X) such that 

J∗(x) = min H(x, u, J∗), ∀ x ∈ X 
u∈U(x) 

( )
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EXAMPLES
 

•	 Discounted problems 

H(x, u, J) = E g(x, u, w) + αJ f(x, u, w) 

• Discounted “discrete-state continuous-time” 
Semi-Markov Problems (e.g., queueing) 

n 

H(x, u, J) = G(x, u) + mxy(u)J(y) 
y=1 

where mxy are “discounted” transition probabili­
ties, defined by the distribution of transition times 

•	 Minimax Problems/Games 

 	  

H(x, u, J) = max g(x, u, w)+αJ f(x, u, w)
w∈W (x,u)

•	 Shortest Path Problems 

axu + J(u) if u  = d,
H(x, u, J) = 

axd	 if u = d 

where d is the destination. There are stochastic 
and minimax versions of this problem 

n
∑

y=1

(

{

6

{ ( )}

6
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ASSUMPTIONS
 

′ ′• Monotonicity: If J, J ∈ R(X) and J ≤ J , 

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x) 

• We can show all the standard analytical and 
computational results of discounted DP if mono-
tonicity and the following assumption holds: 

• Contraction: 

− For every J ∈ B(X), the functions TµJ and 
TJ belong to B(X) 

′− For some α ∈ (0, 1), and all µ and J, J ∈ 
B(X), we have 

ITµJ − TµJ ′I ≤ αIJ − J ′I 

• With just monotonicity assumption (as in undis­
counted problems) we can still show various forms
 
of the basic results under appropriate conditions
 

• A weaker substitute for contraction assumption 
is semicontractiveness: (roughly) for some µ, Tµ 

is a contraction and for others it is not; also the 
“noncontractive” µ are not optimal 
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RESULTS USING CONTRACTION
 

• Proposition 1: The mappings Tµ and T are 
weighted sup-norm contraction mappings with mod­
ulus α over B(X), and have unique fixed points 
in B(X), denoted Jµ and J∗, respectively (cf. 
Bellman’s equation). 

Proof: From the contraction property of H. 

• Proposition 2: For any J ∈ B(X) and µ ∈ M,
 

lim Tµ
kJ = Jµ, lim T kJ = J∗ 

k→∞ k→∞ 

(cf. convergence of value iteration). 

Proof: From the contraction property of Tµ and 
T . 

• Proposition 3: We have TµJ∗ = TJ∗ if and 
only if Jµ = J∗ (cf. optimality condition). 

Proof: TµJ∗ = TJ∗, then TµJ∗ = J∗, implying 
J∗ = Jµ. Conversely, if Jµ = J∗, then TµJ∗ = 
TµJµ = Jµ = J∗ = TJ∗ . 
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RESULTS USING MON. AND CONTRACTION
 

• Optimality of fixed point: 

J∗(x) = min Jµ(x), ∀ x ∈ X 
µ∈M 

• Existence of a nearly optimal policy: For every 
ǫ > 0, there exists µǫ ∈ M such that 

J∗(x) ≤ Jµǫ(x) ≤ J∗(x) + ǫ, ∀ x ∈ X 

• Nonstationary policies: Consider the set Π of 
all sequences π = {µ0, µ1, . . .} with µk ∈ M for 
all k, and define 

Jπ(x) = lim inf (Tµ0 Tµ1 · · · TµkJ)(x), ∀ x ∈ X, 
k→∞ 

with J being any function (the choice of J does 
not matter) 

• We have 

J∗(x) = min Jπ(x), ∀ x ∈ X 
π∈Π 
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THE TWO MAIN ALGORITHMS: VI AND PI
 

• Value iteration: For any (bounded) J 

J∗(x) = lim (T kJ)(x), ∀ x 
k→∞ 

•	 Policy iteration: Given µk 

− Policy evaluation: Find J by solving kµ

J = T kJ kkµ µ µ

− Policy improvement: Find µk+1 such that 

T k+1 J k = TJ kµ µ µ

• Optimistic PI: This is PI, where policy evalu­
ation is carried out by a finite number of VI 

− Shorthand definition: For some integers mk 

mkTµkJk = TJk, Jk+1 = T k Jk, k = 0, 1, . . . 
µ

− If mk ≡ 1 it becomes VI
 

− If mk = ∞ it becomes PI
 

− For intermediate values of mk, it is generally
 
more efficient than either VI or PI 

45



�

ASYNCHRONOUS ALGORITHMS
 

• Motivation for asynchronous algorithms 

− Faster convergence 

− Parallel and distributed computation 

− Simulation-based implementations 

• General framework: Partition X into disjoint 
nonempty subsets X1, . . . , Xm, and use separate 
processor ℓ updating J(x) for x ∈ Xℓ 

• Let J be partitioned as 

J = (J1, . . . , Jm), 

where Jℓ is the restriction of J on the set Xℓ. 

• Synchronous VI algorithm: 

J t+1 (x) = 1, . . . , J
t x ∈ Xℓ, ℓ = 1, . . . ,m T (J t
m)(x),ℓ 

• Asynchronous VI algorithm: For some subsets 
of times Rℓ, 

τℓ1(t) τℓm(t) 

J t+1 T (J , . . . , Jm )(x) if t ∈ Rℓ,1(x) = ℓ J t 
ℓ(x) if t /∈ Rℓ 

where t − τℓj(t) are communication “delays”
 

{

46



�

 

ONE-STATE-AT-A-TIME ITERATIONS
 

• Important special case: Assume n “states”, a 
separate processor for each state, and no delays 

• Generate a sequence of states {x0, x1, . . .}, gen­
erated in some way, possibly by simulation (each 
state is generated infinitely often) 

•	 Asynchronous VI: 

J t+1 T (J1
t , . . . , Jnt )(ℓ) if ℓ = xt, 

= ℓ J t	 if ℓ = xt,ℓ 

where T (J1
t , . . . , Jnt )(ℓ) denotes the ℓ-th compo­

nent of the vector 

T (J1
t , . . . , Jn

t ) = TJ t, 

• The special case where 

{x0, x1, . . .} = {1, . . . , n, 1, . . . , n, 1, . . .} 

is the Gauss-Seidel method 

{

6
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ASYNCHRONOUS CONV. THEOREM I 

• KEY FACT: VI and also PI (with some modifi­
cations) still work when implemented asynchronously 

• Assume that for all ℓ, j = 1, . . . ,m, Rℓ is infinite 
and limt→∞ τℓj(t) = ∞ 

• Proposition: Let T have a unique fixed point J∗ , 
and assume that there is a sequence of nonempty 
subsets S(k) ⊂ R(X) with S(k + 1) ⊂ S(k) for 
all k, and with the following properties: 

(1) Synchronous Convergence Condition: Every 
sequence {Jk} with Jk ∈ S(k) for each k, 
converges pointwise to J∗ . Moreover, 

TJ ∈ S(k+1), ∀ J ∈ S(k), k = 0, 1, . . . . 

(2) Box Condition: For all k, S(k) is a Cartesian 
product of the form 

S(k) = S1(k)× · · · × Sm(k), 

where Sℓ(k) is a set of real-valued functions 
on Xℓ, ℓ = 1, . . . ,m. 

Then for every J ∈ S(0), the sequence {J t} gen­
erated by the asynchronous algorithm converges 
pointwise to J∗ . 48
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ASYNCHRONOUS CONV. THEOREM II
 

• Interpretation of assumptions:
 

A synchronous iteration from any J in S(k) moves 
into S(k + 1) (component-by-component) 

• Convergence mechanism: 

S(0) 
S(k) 

S(k + 1) J∗ 

J = (J1, J2) 

J1 Iterations 

J2 Iteration 

Key: “Independent” component-wise improve­
ment. An asynchronous component iteration from 
any J in S(k) moves into the corresponding com­
ponent portion of S(k + 1) 

S(0)
S(k)

S(k + 1) J∗

J = (J1, J2)

S1(0) 

S2(0) 
T J 

S(0)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

S1(0)

TJ

(0) S(k)
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APPROXIMATE DYNAMIC PROGRAMMING
 

LECTURE 3
 

LECTURE OUTLINE
 

• Review of discounted DP 

• Introduction to approximate DP 

• Approximation architectures 

• Simulation-based approximate policy iteration
 

• Approximate policy evaluation 

• Some general issues about approximation and 
simulation 
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DISCOUNTED PROBLEMS/BOUNDED COST
 

• Stationary system with arbitrary state space 

xk+1 = f(xk, uk, wk), k = 0, 1, . . . 

• Cost of a policy π = {µ0, µ1, . . .} 

  

N−1
 

  

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk 

k=0,1,... k=0 

with α < 1, and for someM , we have |g(x, u, w)| ≤
 
M for all (x, u, w) 

• Shorthand notation for DP mappings (operate
 
on functions of state to produce other functions)
 

    

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x 
u∈U(x) w

TJ is the optimal cost function for the one-stage 
problem with stage cost g and terminal cost αJ 

• For any stationary policy µ 

      

(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x 
w
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MDP - TRANSITION PROBABILITY NOTATION
 

• We will mostly assume the system is an n-state 
(controlled) Markov chain 

• We will often switch to Markov chain notation 

− States i = 1, . . . , n (instead of x) 

− Transition probabilities pik ik+1 (uk) [instead
 
of xk+1 = f(xk, uk, wk)]
 

− Stage cost g(ik, uk, ik+1) [instead of g(xk, uk, wk)] 

− Cost functions J = J(1), . . . , J(n) (vec­
tors in ℜn) 

• Cost of a policy π = {µ0, µ1, . . .} 

N−1 

Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i0 = i 
N→∞ ik 

k=1,2,... k=0 

• Shorthand notation for DP mappings 

n 

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n, 
u∈U(i)
 

j=1
 

n 

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n 

j=1 

(

)
)

{

N−1
∑

k=0

αkg
(

i
)

}

n
∑

j=1

pij(u)
(

(j)
)

,

n
∑

pij
(

µ(i)
)(

g
( )

+αJ(j)
)
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“SHORTHAND” THEORY – A SUMMARY
 

•	 Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ or 

n 

J∗(i) = min pij(u) g(i, u, j)+αJ∗(j) , ∀ i 
u∈U(i) 

j=1
 

n
 

Jµ(i) = pij	 µ(i) g i, µ(i), j + αJµ(j) , ∀ i 
j=1 

• Optimality	 condition: 

µ: optimal <==> TµJ∗ = TJ∗ 

i.e., 

n 

µ(i) ∈ arg min pij(u) g(i, u, j)+αJ∗(j) , ∀ i 
u∈U(i) 

j=1 

∑

( )

∑

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+ αJµ(j)
)

∑

( )
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THE TWO MAIN ALGORITHMS: VI AND PI
 

• Value iteration: For any J ∈ ℜn 

J∗(i) = lim (T kJ)(i), ∀ i = 1, . . . , n 
k→∞ 

• Policy iteration: Given µk 

− Policy evaluation: Find J by solving kµ

n 

Jµk (i) = pij µ 
k(i) g i, µ

k(i), j +αJµk (j) , i = 1, . . . , n 

j=1 

or J = T k J kkµ µ µ

− Policy improvement: Let µk+1 be such that 

n 

µ 
k+1(i) ∈ arg min pij(u) g(i, u, j)+αJ k (j) , ∀ iµ

u∈U(i) 
j=1 

or T k+1 J = TJ kkµ µ µ

• Policy evaluation is equivalent to solving an 
n × n linear system of equations 

• For large n, exact PI is out of the question. We 
use instead optimistic PI (policy evaluation with 
a few VIs) 

∑

(

µ
k( )
)(

g
(

(i),
)

(j)
)

n
∑

(

g(i, u, j)+αJµk (j)
)
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APPROXIMATE DP
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GENERAL ORIENTATION TO ADP
 

• ADP (late 80s - present) is a breakthrough
 
methodology that allows the application of DP to
 
problems with many or infinite number of states.
 

• Other names for ADP are: 

− “reinforcement learning” (RL). 

− “neuro-dynamic programming” (NDP). 

− “adaptive dynamic programming” (ADP). 

• We will mainly adopt an n-state discounted
 
model (the easiest case - but think of HUGE n).
 

• Extensions to other DP models (continuous
 
space, continuous-time, not discounted) are possi­
ble (but more quirky). We will set aside for later.
 

• There are many approaches: 

− Problem approximation 

− Simulation-based approaches (we will focus 
on these) 

• Simulation-based methods are of three types: 

− Rollout (we will not discuss further) 

− Approximation in value space 

− Approximation in policy space 
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WHY DO WE USE SIMULATION?
 

• One reason: Computational complexity advan­
tage in computing sums/expectations involving a 
very large number of terms 

− Any sum 
n 

ai 
i=1 

can be written as an expected value:
 

n n � � 
ai ai 

ai = ξi = Eξ ,
ξi ξi

i=1 i=1 

where ξ is any prob. distribution over {1, . . . , n} 

− It can be approximated by generating many 
samples {i1, . . . , ik} from {1, . . . , n}, accord­
ing to distribution ξ, and Monte Carlo aver­
aging: 

n � � k 
ai 1 ait ai = Eξ ≈ 
ξi k ξiti=1 t=1 

• Simulation is also convenient when an analytical 
model of the system is unavailable, but a simula­
tion/computer model is possible. 

∑

a

∑ ∑

∑ ∑
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APPROXIMATION IN VALUE AND
 

POLICY SPACE
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APPROXIMATION IN VALUE SPACE
 

• Approximate J∗ or Jµ from a parametric class 
J̃(i; r) where i is the current state and r = (r1, . . . , rm) 
is a vector of “tunable” scalars weights 

• Use J̃ in place of J∗ or Jµ in various algorithms 
and computations 

• Role of r: By adjusting r we can change the 
“shape” of J̃ so that it is “close” to J∗ or Jµ 

• Two key issues: 

− The choice of parametric class J̃(i; r) (the 
approximation architecture) 

− Method for tuning the weights (“training” 
the architecture) 

• Success depends strongly on how these issues
 
are handled ... also on insight about the problem
 

• A simulator may be used, particularly when 
there is no mathematical model of the system (but 
there is a computer model) 

• We will focus on simulation, but this is not the 
only possibility 

• We may also use parametric approximation for 
Q-factors or cost function differences 
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APPROXIMATION ARCHITECTURES
 

• Divided in linear and nonlinear [i.e., linear or 
nonlinear dependence of J̃(i; r) on r] 

• Linear architectures are easier to train, but non­
linear ones (e.g., neural networks) are richer 

• Computer chess example: 

− Think of board position as state and move 
as control 

− Uses a feature-based position evaluator that 
assigns a score (or approximate Q-factor) to 
each position/move 

Feature 
Extraction 

Weighting 
of Features 

Features: 
Material balance, 
Mobility, 
Safety, etc 

Position Evaluator 

Score
  

• Relatively few special features and weights, and 
multistep lookahead 
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LINEAR APPROXIMATION ARCHITECTURES
 

• Often, the features encode much of the nonlin­
earity inherent in the cost function approximated
 

• Then the approximation may be quite accurate 
without a complicated architecture (as an extreme 
example, the ideal feature is the true cost func­
tion) 

• With well-chosen features, we can use a linear 
architecture: J̃(i; r) = φ(i)′ r, i = 1, . . . , n, or 

s 

J̃(r) = Φr = Φjrj 
j=1 

Φ: the matrix whose rows are φ(i)′ , i = 1, . . . , n, 
Φj is the jth column of Φ 

State i Feature Extraction 
Mapping Mapping 

Feature Vector φ(i) Linear 
Linear Cost 

Approximator φ(i)′ r 

• This is approximation on the subspace 

S = {Φr | r ∈ ℜs} 

spanned by the columns of Φ (basis functions) 

• Many examples of feature types: Polynomial 
approximation, radial basis functions, etc 

∑

Approximator
i Mapping Feature Vector

Approximator ( )Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)
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ILLUSTRATIONS: POLYNOMIAL TYPE 

• Polynomial Approximation, e.g., a quadratic 
approximating function. Let the state be i = 
(i1, . . . , iq) (i.e., have q “dimensions”) and define 

φ0(i) = 1, φk(i) = ik, φkm(i) = ikim, k,m = 1, . . . , q 

Linear approximation architecture: 

q q q 

J̃(i; r) = r0 + rkik + rkmikim,
 

k=1 k=1 m=k
 

where r has components r0, rk, and rkm. 

• Interpolation: A subset I of special/representative 
states is selected, and the parameter vector r has 
one component ri per state i ∈ I. The approxi­
mating function is 

J̃(i; r) = ri, i ∈ I, 

J̃(i; r) = interpolation using the values at i ∈ I, i /∈ I
 

For example, piecewise constant, piecewise linear, 
more general polynomial interpolations. 

∑ ∑∑
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A DOMAIN SPECIFIC EXAMPLE
 

• Tetris game (used as testbed in competitions)
 

......
 

TERMINATION 

• J∗(i): optimal score starting from position i 

• Number of states > 2200 (for 10× 20 board) 

• Success with just 22 features, readily recognized 
by tetris players as capturing important aspects of 
the board position (heights of columns, etc) 
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Controlled System Cost per Stage Vector
tion Matrix ( )

i, u, r)

Steady­State Distribution
Cost ( )

Approximate Policy Evaluation

Approximate Policy Evaluation

Initial state ( ) Time

Controlled System Cost per Stage Vector
tion Matrix ( )

Approximate Policy

Evaluation

Policy Improvement

Approximate Policy

Evaluation

Policy ImprovementGenerate “Imp

APPROX. PI - OPTION TO APPROX. Jµ OR Qµ 

• Use simulation to approximate the cost Jµ of 
the current policy µ 

• Generate “improved” policy µ by minimizing in 
(approx.) Bellman equation 

Generate “Improved” Policy µ 

Initial Policy 

J̃µ(i, r) 
Evaluate Approximate Cost 

• Altenatively approximate the Q-factors of µ
 

roved” Policy µ 

Evaluate Approximate Q­Factors 

µ(i) = arg minu∈U (i) Q̃µ(i, u, r) 

Initial Policy 

Q̃µ(i, u, r) 
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APPROXIMATING J∗ OR Q∗
 

• Approximation of the optimal cost function J∗ 

− Q-Learning: Use a simulation algorithm to 
approximate the Q-factors 

n 

Q∗(i, u) = g(i, u) + α pij(u)J∗(j); 
j=1 

and the optimal costs 

J∗(i) = min Q∗(i, u) 
u∈U(i) 

− Bellman Error approach: Find r to 

2 
min Ei J̃(i; r)− (T J̃)(i; r) 
r 

where Ei{·} is taken with respect to some 
distribution over the states 

− Approximate Linear Programming (we will 
not discuss here) 

• Q-learning can also be used with approxima­
tions 

• Q-learning and Bellman error approach can also 
be used for policy evaluation 

∑

( )
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APPROXIMATION IN POLICY SPACE 

•	 A brief discussion; we will return to it later. 

• Use parametrization µ(i; r) of policies with a 
vector r = (r1, . . . , rs). Examples: 

− Polynomial, e.g., µ(i; r) = r1 + r2 · i+ r3 · i2 

− Linear feature-based 

µ(i; r) = φ1(i) · r1 + φ2(i) · r2 

•	 Optimize the cost over r. For example: 

− Each value of r defines a stationary policy, 
with cost starting at state i denoted by J̃(i; r). 

− Let (p1, . . . , pn) be some probability distri­
bution over the states, and minimize over r 

n 

˜piJ(i; r) 
i=1 

−	 Use a random search, gradient, or other method 

• A special case: The parameterization of the 
policies is indirect, through a cost approximation 
architecture Ĵ , i.e., 

n 

µ(i; r) ∈ arg min pij(u) g(i, u, j) + αĴ(j; r) 
u∈U(i) 

j=1 

∑

∑
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APPROXIMATE POLICY EVALUATION
 

METHODS
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Set

=

Direct Method: Projection of cost vector Π

µ

cost vector

( ) ( ) ( )Direct Method: Projection of

Subspace S {Φr | r ∈ ℜs}

DIRECT POLICY EVALUATION
 

• Approximate the cost of the current policy by 
using least squares and simulation-generated cost 
samples 

• Amounts to projection of Jµ onto the approxi­
mation subspace 

Jµ 

ΠJµ 
0 

= 

Direct Method: Projection of 
cost vector Jµ 

• Solution by least squares methods 

• Regular and optimistic policy iteration 

• Nonlinear approximation architectures may also 
be used 
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DIRECT EVALUATION BY SIMULATION
 

• Projection by Monte Carlo Simulation: Com­
pute the projection ΠJµ of Jµ on subspace S = 
{Φr | r ∈ ℜs}, with respect to a weighted Eu­
clidean norm I · Iξ 

• Equivalently, find Φr ∗, where 
n 

r ∗ = arg min IΦr−JµI2 = arg min ξi φ(i)′ r−Jµ(i)ξ 
r∈ℜs r∈ℜs 

i=1 
• Setting to 0 the gradient at r ∗ , 

  −1n n 

r ∗ = ξiφ(i)φ(i)′ ξiφ(i)Jµ(i)
 
i=1 i=1
 

• Generate samples (i1, Jµ(i1)), . . . , (ik, Jµ(ik)) 
using distribution ξ 

• Approximate by Monte Carlo the two “expected 
values” with low-dimensional calculations 

  −1
k k 

r̂k = φ(it)φ(it)′ φ(it)Jµ(it)
 
t=1 t=1
 

• Equivalent least squares alternative calculation: 

k 
2 

r̂k = arg min φ(it)′ r − Jµ(it)
 
r∈ℜs
 

t=1 

2 ∑

( )

(

∑

)

∑

(

k
∑

t=1

)

∑

∑

( )
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Set

=

Set

=

Direct Method: Projection of cost vector Π

µ

form of Bellman’s equation

Projection onIndirect Method: Solving a projected

cost vector

( ) ( ) ( )Direct Method: Projection of

Subspace S {Φr | r ∈ ℜs}

0

Tµ(Φr) 

Φr = ΠTµ(Φr) 

INDIRECT POLICY EVALUATION
 

• An example: Galerkin approximation 

• Solve the projected equation Φr = ΠTµ(Φr) 
where Π is projection w/ respect to a suitable 
weighted Euclidean norm 

Jµ 

ΠJµ 
0 

= Subspace S = {Φr | r ∈ ℜs} 

Direct Method: Projection of Indirect Method: Solving a projected 
cost vector Jµ form of Bellman’s equation 

• Solution methods that use simulation (to man­
age the calculation of Π) 

− TD(λ): Stochastic iterative algorithm for solv­
ing Φr = ΠTµ(Φr) 

− LSTD(λ): Solves a simulation-based approx­
imation w/ a standard solver 

− LSPE(λ): A simulation-based form of pro­
jected value iteration; essentially 

Φrk+1 = ΠTµ(Φrk) + simulation noise 
71



BELLMAN EQUATION ERROR METHODS 

• Another example of indirect approximate policy
 
evaluation:
 

min IΦr − Tµ(Φr)I2 (∗)ξ r 

where I · Iξ is Euclidean norm, weighted with re­
spect to some distribution ξ 

• It is closely related to the projected equation/Galerkin 
approach (with a special choice of projection norm) 

• Several ways to implement projected equation
 
and Bellman error methods by simulation. They
 
involve:
 

− Generating many random samples of states 
ik using the distribution ξ 

− Generating many samples of transitions (ik, jk) 
using the policy µ 

− Form a simulation-based approximation of 
the optimality condition for projection prob­
lem or problem (*) (use sample averages in 
place of inner products) 

− Solve the Monte-Carlo approximation of the 
optimality condition 

• Issues for indirect methods: How to generate
 
the samples? How to calculate r ∗ efficiently?
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1 2 3 4 5 6 7 8 9

ANOTHER INDIRECT METHOD: AGGREGATION
 

• A first idea: Group similar states together into 
“aggregate states” x1, . . . , xs; assign a common 
cost value ri to each group xi. 

• Solve an “aggregate” DP problem, involving the 
aggregate states, to obtain r = (r1, . . . , rs). This 
is called hard aggregation 

1 2 3 

4 5 6 

7 8 9 

x1 x2 

x3 x4 

Φ = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 0 0 0 
1 0 0 0 
0 1 0 0 
1 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 1 0 
0 0 0 1 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

• More general/mathematical view: Solve 

Φr = ΦDTµ(Φr) 

where the rows of D and Φ are prob. distributions 
(e.g., D and Φ “aggregate” rows and columns of 
the linear system J = TµJ) 

• Compare with projected equation Φr = ΠTµ(Φr). 
Note: ΦD is a projection in some interesting cases 

2 3 4 5 6 7 8 91 3 4 5 6 7 8 91 2 4 5 6 7 8 9

1 2 3 5 6 7 8 91 2 3 4 6 7 8 91 2 3 4 5 7 8 9

1 2 3 4 5 6 8 91 2 3 4 5 6 7 91 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9
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according to with cost

S

, = 1

), ),

System States Aggregate States

 

Original Aggregate States

 

|

Original System States

Probabilities

 

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

 

Aggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

AGGREGATION AS PROBLEM APPROXIMATION
 

dxi φjy Q 

Original 
System States 

p̂xy(u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)φjy , 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

ĝ(x, u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)g(i, u, j) 

, g(i, u, j) 

• Aggregation can be viewed as a systematic 
approach for problem approximation. Main ele­
ments: 

− Solve (exactly or approximately) the “ag­
gregate” problem by any kind of VI or PI 
method (including simulation-based methods) 

−	 Use the optimal cost of the aggregate prob­
lem to approximate the optimal cost of the 
original problem 

• Because an exact PI algorithm is used to solve 
the approximate/aggregate problem the method 
behaves more regularly than the projected equa­
tion approach 

according to pij(u), with cost

S

, = 1

), ),

System States Aggregate States

{

Original Aggregate States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

, g(i, u, j)
Matrix Matrix

{

|

Original System States Aggregate States

{

|

Original System States

, j = 1i

), x ), y
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APPROXIMATE POLICY ITERATION
 

ISSUES
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THEORETICAL BASIS OF APPROXIMATE PI
 

• If policies are approximately evaluated using an 
approximation architecture such that 

max |J̃(i, rk)− J k (i)| ≤ δ, k = 0, 1, . . . µ
i 

• If policy improvement is also approximate, 

max |(T k+1 J̃)(i, rk)−(T J̃)(i, rk)| ≤ ǫ, k = 0, 1, . . . µ
i 

• Error bound: The sequence {µk} generated by 
approximate policy iteration satisfies 

ǫ+ 2αδ 
lim sup max J k (i)− J∗(i) ≤µ
k→∞ i (1− α)2 

• Typical practical behavior: The method makes 
steady progress up to a point and then the iterates 
J oscillate within a neighborhood of J∗ 

k .µ

• Oscillations are quite unpredictable. 

− Some bad examples of oscillations have been 
constructed. 

− In practice oscillations between policies is 
probably not the major concern. 
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THE ISSUE OF EXPLORATION
 

• To evaluate a policy µ, we need to generate cost 
samples using that policy - this biases the simula­
tion by underrepresenting states that are unlikely 
to occur under µ 

• Cost-to-go estimates of underrepresented states 
may be highly inaccurate 

• This seriously impacts the improved policy µ
 

• This is known as inadequate exploration - a 
particularly acute difficulty when the randomness 
embodied in the transition probabilities is “rela­
tively small” (e.g., a deterministic system) 

• Some remedies: 

− Frequently restart the simulation and ensure 
that the initial states employed form a rich 
and representative subset 

− Occasionally generate transitions that use a 
randomly selected control rather than the 
one dictated by the policy µ 

− Other methods: Use two Markov chains (one 
is the chain of the policy and is used to gen­
erate the transition sequence, the other is 
used to generate the state sequence). 
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APPROXIMATING Q-FACTORS
 

• Given J̃(i; r), policy improvement requires a 
model [knowledge of pij(u) for all controls u ∈ 
U(i)] 

• Model-free alternative: Approximate Q-factors
 

n 

Q̃(i, u; r) ≈ pij(u) g(i, u, j) + αJµ(j) 
j=1 

and use for policy improvement the minimization 

˜µ(i) ∈ arg min Q(i, u; r)
 
u∈U(i) 

• r is an adjustable parameter vector and Q̃(i, u; r) 
is a parametric architecture, such as 

s 

Q̃(i, u; r) = rmφm(i, u) 
m=1 

• We can adapt any of the cost approximation
 
approaches, e.g., projected equations, aggregation
 

• Use the Markov chain with states (i, u), so 
pij(µ(i)) is the transition prob. to (j, µ(i)), 0 to 
other (j, u′) 

• Major concern: Acutely diminished exploration
 

∑

∑
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SOME GENERAL ISSUES
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STOCHASTIC ALGORITHMS: GENERALITIES
 

• Consider solution of a linear equation x = b + 
Ax by using m simulation samples b + wk and 
A+Wk, k = 1, . . . ,m, where wk,Wk are random, 
e.g., “simulation noise” 

• Think of x = b + Ax as approximate policy 
evaluation (projected or aggregation equations) 

• Stoch. approx. (SA) approach: For k = 1, . . . ,m
 

xk+1 = (1− γk)xk + γk (b+ wk) + (A+ Wk)xk 

• Monte Carlo estimation (MCE) approach: Form 
Monte Carlo estimates of b and A 

m m
1 1 

bm = (b+ wk), Am = (A+ Wk) 
m m 

k=1 k=1 

Then solve x = bm + Amx by matrix inversion 

xm = (1−Am)−1bm 

or iteratively 

• TD(λ) and Q-learning are SA methods 

• LSTD(λ) and LSPE(λ) are MCE methods 

(

∑ ∑
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COSTS OR COST DIFFERENCES?
 

• Consider the exact policy improvement process. 
To compare two controls u and u ′ at x, we need 

E g(x, u, w)− g(x, u ′ , w) + α Jµ(x)− Jµ(x 
′ ) 

′ where x = f(x, u, w) and x = f(x, u ′ , w) 

• Approximate Jµ(x) or 

Dµ(x, x ′ ) = Jµ(x)− Jµ(x ′ )? 

• Approximating Dµ(x, x 
′ ) avoids “noise differ­

encing”. This can make a big difference 

• Important point: Dµ satisfies a Bellman equa­
tion for a system with “state” (x, x ′) 

Dµ(x, x ′) = E Gµ(x, x ′ , w) + αDµ(x, x 
′ ) 

′ where x = f x, µ(x), w , x = f x′ , µ(x ′), w and 

Gµ(x, x ′ , w) = g x, µ(x), w − g x ′ , µ(x ′), w 

• Dµ can be “learned” by the standard methods 
(TD, LSTD, LSPE, Bellman error, aggregation, 
etc). This is known as differential training. 

)}

)
{ }

(

x, µ(x), w
)

, x′ = f
(

x′, µ(x′), w
)

and

) = g
(

x, µ(x), w
)

− g
(

x′, µ(x′), w
)
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AN EXAMPLE (FROM THE NDP TEXT)
 

• System and cost per stage: 

xk+1 = xk + δuk, g(x, u) = δ(x2 + u2) 

δ > 0 is very small; think of discretization of
 
continuous-time problem involving dx(t)/dt = u(t)
 

• Consider policy µ(x) = −2x. Its cost function 
is 

5x2 
Jµ(x) = (1 + δ) +O(δ2)

4 

and its Q-factor is 

  

5x2 9x2 5 
Qµ(x, u) = + δ + u2 + xu + O(δ2)

4 4 2
 

• The important part for policy improvement is
 

  

δ u2 + 
5 
xu

2 

When Jµ(x) [or Qµ(x, u)] is approximated by 
J̃µ(x; r) [or by Q̃µ(x, u; r)], it will be dominated 

by 5x 
2 
and will be “lost” 4 
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6.231 DYNAMIC PROGRAMMING
 

LECTURE 4 

LECTURE OUTLINE 

• Review of approximation in value space
 

• Approximate VI and PI 

• Projected Bellman equations 

• Matrix form of the projected equation
 

• Simulation-based implementation 

• LSTD and LSPE methods 

• Optimistic versions 

• Multistep projected Bellman equations
 

• Bias-variance tradeoff 
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REVIEW
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DISCOUNTED MDP
 

• System: Controlled Markov chain with states
 
i = 1, . . . , n, and finite control set U(i) at state i
 

• Transition probabilities: pij(u) 

i j 

pij(u) 

pii(u) p j j(u ) 

pji(u) 

• Cost of a policy π = {µ0, µ1, . . .} starting at 
state i: 

  

N
 

( ) 

Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i0 = i
N→∞ 

k=0 

with α ∈ [0, 1) 

• Shorthand notation for DP mappings 

n
 

( )

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n, 
u∈U(i) 

j=1 

n
 

( )( ( ) ) 

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n 

j=1 

i j

pij(u)

p

pji(u)
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“SHORTHAND” THEORY – A SUMMARY
 

•	 Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ or 

n 
(	 )

J∗(i) = min pij(u) g(i, u, j)+αJ∗(j) , ∀ i 
u∈U(i) 

j=1
 

n
 
( )( ( )	 )

Jµ(i) = pij	 µ(i) g i, µ(i), j + αJµ(j) , ∀ i 
j=1 

• Optimality	 condition: 

µ: optimal <==> TµJ∗ = TJ∗ 

i.e., 

n 
(	 )

µ(i) ∈ arg min pij(u) g(i, u, j)+αJ∗(j) , ∀ i 
u∈U(i) 

j=1 

∑

∑

∑

86



 

 

THE TWO MAIN ALGORITHMS: VI AND PI
 

• Value iteration: For any J ∈ ℜn 

J∗(i) = lim (T kJ)(i), ∀ i = 1, . . . , n 
k→∞ 

•	 Policy iteration: Given µk 

− Policy evaluation: Find J by solving kµ

n 
( )( ( )	 )

Jµk (i) = pij µ 
k(i) g i, µ

k(i), j +αJµk (j) , i = 1, . . . , n 

j=1 

or	 J = T kJ kkµ µ µ

− Policy improvement: Let µk+1 be such that 

n
 

k+1
( )


µ (i) ∈ arg min pij(u) g(i, u, j)+αJµk (j) , ∀ i 
u∈U(i) 

j=1 

or	 T k+1 J = TJ kkµ µ µ

• Policy evaluation is equivalent to solving an 
n × n linear system of equations 

• For large n, exact PI is out of the question 
(even though it terminates finitely) 

∑

∑
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APPROXIMATION IN VALUE SPACE
 

• Approximate J∗ or Jµ from a parametric class 
J̃(i; r), where i is the current state and r = (r1, . . . , rs) 
is a vector of “tunable” scalars weights 

• Think n: HUGE, s: (Relatively) SMALL 

• Many types of approximation architectures [i.e., 
parametric classes J̃(i; r)] to select from 

• Any r ∈ ℜs defines a (suboptimal) one-step 
lookahead policy 

n 
( )

µ̃(i) = arg min pij(u) g(i, u, j)+αJ̃(j; r) , ∀ i 
u∈U(i) 

j=1 

• We want to find a “good” r 

• We will focus mostly on linear architectures 

J̃(r) = Φr 

where Φ is an n × s matrix whose columns are 
viewed as basis functions 

∑
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Approximator
i Mapping Feature Vector

Approximator ( )Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)

 

LINEAR APPROXIMATION ARCHITECTURES
 

• We have 

J̃(i; r) = φ(i)′ r, i = 1, . . . , n 

where φ(i)′ , i = 1, . . . , n is the ith row of Φ, or 
s 

J̃(r) = Φr = Φjrj 
j=1 

where Φj is the jth column of Φ 

State i Feature Extraction 
Mapping Mapping 

Feature Vector φ(i) Linear 
Linear Cost 

Approximator φ(i)′ r 

• This is approximation on the subspace 

S = {Φr | r ∈ ℜs}

spanned by the columns of Φ (basis functions) 

• Many examples of feature types: Polynomial 
approximation, radial basis functions, etc 

• Instead of computing Jµ or J∗, which is huge-
dimensional, we compute the low-dimensional r = 
(r1, . . . , rs) using low-dimensional calculations 

∑

Approximator
i Mapping Feature Vector

Approximator ( )Feature Extraction Feature VectorFeature Extraction Feature Vector

Feature Extraction Mapping Linear Cost
i) Cost

i)
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APPROXIMATE VALUE ITERATION
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Set

 

Fitted Value Iteration

0
 

0
 

˜
1

1

˜
2

˜
2

Subspace S = {Φr | r ∈ ℜs}

APPROXIMATE (FITTED) VI
 

• Approximates sequentially Jk(i) = (T kJ0)(i), 
k = 1, 2, . . ., with J̃k(i; rk) 

• The starting function J0 is given (e.g., J0 ≡ 0) 

• Approximate (Fitted) Value Iteration: A se­
quential “fit” to produce J̃k+1 from J̃k, i.e., J̃k+1 ≈ 
T J̃k or (for a single policy µ) J̃k+1 ≈ TµJ̃k 

TJ0 
T J̃1 

T J̃2 

˜

J0 J2 ˜
˜ J3J1 

Fitted Value Iteration 

• After a large enough number N of steps, J̃N (i; rN ) 
is used as approximation J̃(i; r) to J∗(i) 

• Possibly use (approximate) projection Π with 
respect to some projection norm, 

J̃k+1 ≈ ΠT J̃k 
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WEIGHTED EUCLIDEAN PROJECTIONS
 

• Consider a weighted Euclidean norm 

 

 n 
 

( )2 
 IJIξ = ξi J(i) , 

i=1 

where ξ = (ξ1, . . . , ξn) is a positive distribution 
(ξi > 0 for all i). 

• Let Π denote the projection operation onto 

S = {Φr | r ∈ ℜs} 

with respect to this norm, i.e., for any J ∈ ℜn, 

ΠJ = Φr ∗ 

where 
r ∗ = arg min IΦr − JI2 

ξ 
r∈ℜs 

• Recall that weighted Euclidean projection can 
be implemented by simulation and least squares, 
i.e., sampling J(i) according to ξ and solving 

k 
( )2 

min φ(it)′ r − J(it)
r∈ℜs 

t=1
 

∑

∑

92



 

FITTED VI - NAIVE IMPLEMENTATION
 

• Select/sample a “small” subset Ik of represen­
tative states 

• For each i ∈ Ik, given J̃k, compute 

n 
( )

(T J̃k)(i) = min pij(u) g(i, u, j) + αJ̃k(j; r)
u∈U(i) 

j=1 

• “Fit” the function J̃k+1(i; rk+1) to the “small” 
set of values (T J̃k)(i), i ∈ Ik (for example use 
some form of approximate projection) 

• Simulation can be used for “model-free” imple­
mentation 

• Error Bound: If the fit is uniformly accurate 
within δ > 0, i.e., 

max |J̃k+1(i)− T J̃k(i)| ≤ δ, 
i 

then 

( ) 2αδ 
lim sup max J̃k(i, rk)− J∗(i) ≤ 

k→∞ i=1,...,n (1− α)2 

• But there is a potential problem! 

∑
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AN EXAMPLE OF FAILURE
 

• Consider two-state discounted MDP with states 
1 and 2, and a single policy. 

− Deterministic transitions: 1 → 2 and 2 → 2 

− Transition costs ≡ 0, so J∗(1) = J∗(2) = 0. 

• Consider (exact) fitted VI scheme that approx­
  

imates cost functions within S = (r, 2r) | r ∈ ℜ

1 
with a weighted least squares fit; here Φ = 

2 

• Given J̃k = (rk, 2rk), we find J̃k+1 = (rk+1, 2rk+1), 
where J̃k+1 = Πξ(T J̃k), with weights ξ = (ξ1, ξ2): 

  

( )2 ( )2
rk+1 = argmin ξ1 r−(T J̃k)(1) +ξ2 2r−(T J̃k)(2)

r

• With straightforward calculation 

rk+1 = αβrk, where β = 2(ξ1+2ξ2)/(ξ1+4ξ2) > 1 

• So if α > 1/β (e.g., ξ1 = ξ2 = 1), the sequence 
{rk} diverges and so does {J̃k}. 

• Difficulty is that T is a contraction, but ΠξT 

(= least squares fit composed with T ) is not. 
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Fitted Value Iteration

0
 

˜
1

˜
2

J

0

1̃

 2

Subspace S = {Φr | r ∈ ℜs}

� � 

NORM MISMATCH PROBLEM
 

• For the method to converge, we need ΠξT to 
be a contraction; the contraction property of T is 
not enough 

TJ0 
T J̃1 

T J̃2 

˜ = Πξ(T ˜J2 J1)J0 

˜ J̃3 = Πξ(T J̃2)
J1 = Πξ(TJ0) 

Fitted Value Iteration with Projection 

• We need a vector of weights ξ such that T is 
a contraction with respect to the weighted Eu­
clidean norm I · Iξ 

• Then we can show that ΠξT is a contraction 
with respect to I · Iξ 

• We will come back to this issue 
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APPROXIMATE POLICY ITERATION
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Controlled System Cost per Stage Vector
tion Matrix ( )

i, u, r)

Steady­State Distribution
Cost ( )

Approximate Policy

Evaluation

Policy Improvement

 

APPROXIMATE PI
 

Generate “Improved” Policy µ 

Initial Policy 

J̃µ(i, r) 
Evaluate Approximate Cost 

• Evaluation of typical policy µ: Linear cost func­
tion approximation J̃µ(r) = Φr, where Φ is full 
rank n × s matrix with columns the basis func­
tions, and ith row denoted φ(i)′ . 

• Policy “improvement” to generate µ: 
n 

( )

µ(i) = arg min pij(u) g(i, u, j) + αφ(j)′ r
u∈U(i) 

j=1 

• Error Bound (same as approximate VI): If 

max |J̃ k(i, rk)− J k(i)| ≤ δ, k = 0, 1, . . . µ µ
i 

the sequence {µk} satisfies 

( ) 2αδ 
lim sup max J k(i)− J∗(i) ≤µ

i (1− α)2 
k→∞ 

∑
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Set

=

Set

=

Direct Method: Projection of cost vector Π

µ

form of Bellman’s equation

Projection onIndirect Method: Solving a projected

cost vector

( ) ( ) ( )Direct Method: Projection of

Subspace S {Φr | r ∈ ℜs}

0

POLICY EVALUATION
 

• Let’s consider approximate evaluation of the 
cost of the current policy by using simulation. 

− Direct policy evaluation - Cost samples gen­
erated by simulation, and optimization by 
least squares 

− Indirect policy evaluation - solving the pro­
jected equation Φr = ΠTµ(Φr) where Π is 
projection w/ respect to a suitable weighted 
Euclidean norm 

= Subspace S = {Φr | r ∈ ℜs} 

0 

Jµ 

ΠJµ 

Tµ(Φr) 

Φr = ΠTµ(Φr) 

Indirect Method: Solving a projected 
form of Bellman’s equation 

Direct Method: Projection of 
cost vector Jµ 

• Recall that projection can be implemented by 
simulation and least squares 
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Controlled System Cost per Stage Vector
tion Matrix ( )

i, u, r)

Steady­State Distribution
Cost ( )

Approximate Policy

Evaluation

Policy Improvement

PI WITH INDIRECT POLICY EVALUATION
 

Generate “Improved” Policy µ 

Initial Policy 

J̃µ(i, r) 
Evaluate Approximate Cost 

• Given the current policy µ: 

− We solve the projected Bellman’s equation 

Φr = ΠTµ(Φr) 

− We approximate the solution Jµ of Bellman’s 
equation 

J = TµJ 

with the projected equation solution J̃µ(r) 
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KEY QUESTIONS AND RESULTS
 

• Does the projected equation have a solution?
 

• Under what conditions is the mapping ΠTµ a 
contraction, so ΠTµ has unique fixed point? 

• Assumption: The Markov chain corresponding 
to µ has a single recurrent class and no transient 
states, i.e., it has steady-state probabilities that 
are positive 

N
1 

ξj = lim P (ik = j | i0 = i) > 0 
N→∞ N 

k=1 

Note that ξj is the long-term frequency of state j. 

• Proposition: (Norm Matching Property) As­
sume that the projection Π is with respect to I·Iξ, 
where ξ = (ξ1, . . . , ξn) is the steady-state proba­
bility vector. Then: 

(a) ΠTµ is contraction of modulus α with re­
spect to I · Iξ. 

(b) The unique fixed point Φr ∗ of ΠTµ satisfies 

1 
IJµ − Φr ∗Iξ ≤ √ IJµ −ΠJµIξ 

1− α2 

∑
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r

�

J

Subspace S {Φr | r ∈ ℜs}

PRELIMINARIES: PROJECTION PROPERTIES
 

• Important property of the projection Π on S 
with weighted Euclidean norm I · Iξ. For all J ∈ 
ℜn, Φr ∈ S, the Pythagorean Theorem holds: 

IJ − ΦrI
2
 
ξ
 =
 IJ −ΠJI
2 

ξ
 + IΠJ − ΦrI
2
 
ξ
 

J 

Φr ΠJ 

= 

• The Pythagorean Theorem implies that the pro­
jection is nonexpansive, i.e., 

¯ ¯IΠJ −ΠJIξ ≤ IJ − J̄Iξ, for all J, J ∈ ℜn . 

To see this, note that

  
2
   
2
   
2
 
    Π(J − J) ≤  Π(J − J) +  (I −Π)(J − J)
ξ ξ ξ 

= IJ − JI
2
 
ξ
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PROOF OF CONTRACTION PROPERTY
 

• Lemma: If P is the transition matrix of µ, 

IPzIξ ≤ IzIξ, z ∈ ℜn 

Proof: Let pij be the components of P . For all 
z ∈ ℜn, we have 

 2 
n n n n 

2IPzIξ 
2 = ξi  pijzj ≤ ξi pijzj 

i=1 j=1 i=1 j=1 

n n n 

2 2= ξipijz = ξjz = IzIξ
2 ,j j 

j=1 i=1 j=1 

where the inequality follows from the convexity of
 
the quadratic function, and the next to last equal­

 n
ity follows from the defining property ξipij = i=1 
ξj of the steady-state probabilities. 

• Using the lemma, the nonexpansiveness of Π, 
and the definition TµJ = g + αPJ , we have 

¯ ¯�ΠTµJ−ΠTµJ�ξ ≤ �TµJ−TµJ�ξ = α�P (J−J̄)�ξ ≤ α�J−J̄�ξ 

¯for all J, J ∈ ℜn . Hence ΠTµ is a contraction of 
modulus α. 

∑ ∑ ∑ ∑

∑∑ ∑

102



 

 

 

 

 

 

 

 

PROOF OF ERROR BOUND
 

• Let Φr ∗ be the fixed point of ΠT . We have 

1
 
IJµ − Φr ∗Iξ ≤ √ IJµ −ΠJµIξ. 

1− α2 

Proof: We have 

2 
IJµ − Φr ∗I2 = IJµ −ΠJµI2 + ΠJµ − Φr ∗ ξ ξ ξ 

= IJµ −ΠJµI2 + ΠTJµ −ΠT (Φr ∗)ξ ξ 

≤ IJµ −ΠJµI2 + α2IJµ − Φr ∗I2 
ξ ,ξ 

where 

− The first equality uses the Pythagorean The­
orem 

− The second equality holds because Jµ is the 
fixed point of T and Φr ∗ is the fixed point 
of ΠT 

− The inequality uses the contraction property 
of ΠT . 

Q.E.D. 

2 

∥

∥

∥

∥

∥

∥

∥

∥
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SIMULATION-BASED SOLUTION OF
 

PROJECTED EQUATION
 

104



Set

=

r

MATRIX FORM OF PROJECTED EQUATION
 

Subspace S = {Φr | r ∈ ℜs} 

0 

Tµ(Φr)= g + αP Φr 

Φr = ΠξTµ(Φr) 

• The solution Φr ∗ satisfies the orthogonality con­
dition: The error 

Φr ∗ − (g + αPΦr ∗) 

is “orthogonal” to the subspace spanned by the 
columns of Φ. 

• This is written as 

( )

Φ′Ξ Φr ∗ − (g + αPΦr ∗) = 0, 

where Ξ is the diagonal matrix with the steady-
state probabilities ξ1, . . . , ξn along the diagonal. 

• Equivalently, Cr∗ = d, where 

C = Φ′Ξ(I − αP )Φ, d = Φ′Ξg 

but computing C and d is HARD (high-dimensional 
inner products). 
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SOLUTION OF PROJECTED EQUATION
 

• Solve Cr∗ = d by matrix inversion: r ∗ = C−1d 

• Projected Value Iteration (PVI) method: 

Φrk+1 = ΠT (Φrk) = Π(g + αPΦrk) 

Converges to r ∗ because ΠT is a contraction. 

S: Subspace spanned by basis functions 

Φrk 

T(Φrk) = g + αPΦrk 

0 

Φrk+1 

Value Iterate 

Projection 
on S 

• PVI can be written as: 

2 
rk+1 = arg min Φr − (g + αPΦrk) ξr∈ℜs 

By setting to 0 the gradient with respect to r,
 

( )

Φ′Ξ Φrk+1 − (g + αPΦrk) = 0, 

which yields 

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d) 

∥

∥

∥

∥
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SIMULATION-BASED IMPLEMENTATIONS
 

• Key idea: Calculate simulation-based approxi­
mations based on k samples 

Ck ≈ C, dk ≈ d 

• Matrix inversion r ∗ = C−1d is approximated 
by 

C−1 r̂k = k dk 

This is the LSTD (Least Squares Temporal Dif­
ferences) Method. 

• PVI method rk+1 = rk − (Φ′ΞΦ)−1(Crk − d) is 
approximated by 

rk+1 = rk −Gk(Ckrk − dk) 

where 
Gk ≈ (Φ′ΞΦ)−1 

This is the LSPE (Least Squares Policy Evalua­
tion) Method. 

• Key fact: Ck, dk, and Gk can be computed 
with low-dimensional linear algebra (of order s; 
the number of basis functions). 
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SIMULATION MECHANICS
 

• We generate an infinitely long trajectory (i0, i1, . . .) 
of the Markov chain, so states i and transitions 
(i, j) appear with long-term frequencies ξi and pij . 

• After generating each transition (it, it+1), we 
compute the row φ(it)′ of Φ and the cost compo­
nent g(it, it+1). 

• We form 

k 

dk =
1 

φ(it)g(it, it+1) ≈ ξipijφ(i)g(i, j) = Φ ′ Ξg = d 
k + 1 

t=0 i,j 

k 
1 ( )′ 

Ck = φ(it) φ(it)−αφ(it+1) ≈ Φ ′ Ξ(I−αP )Φ = C 
k + 1 

t=0 

Also in the case of LSPE 

k
1 

Gk = φ(it)φ(it)′ ≈ Φ′ΞΦ 
k + 1 

t=0 

• Convergence based on law of large numbers. 

• Ck, dk, and Gk can be formed incrementally. 
Also can be written using the formalism of tem­
poral differences (this is just a matter of style) 

∑ ∑

∑

∑
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OPTIMISTIC VERSIONS
 

• Instead of calculating nearly exact approxima­
tions Ck ≈ C and dk ≈ d, we do a less accurate 
approximation, based on few simulation samples 

• Evaluate (coarsely) current policy µ, then do a 
policy improvement 

• This often leads to faster computation (as op­
timistic methods often do) 

• Very complex behavior (see the subsequent dis­
cussion on oscillations) 

• The matrix inversion/LSTD method has serious 
problems due to large simulation noise (because of 
limited sampling) - particularly if the C matrix is 
ill-conditioned 

• LSPE tends to cope better because of its itera­
tive nature (this is true of other iterative methods 
as well) 

• A stepsize γ ∈ (0, 1] in LSPE may be useful to 
damp the effect of simulation noise 

rk+1 = rk − γGk(Ckrk − dk) 
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MULTISTEP PROJECTED EQUATIONS
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MULTISTEP METHODS
 

• Introduce a multistep version of Bellman’s equa­
tion J = T (λ)J , where for λ ∈ [0, 1), 

∞ 

T (λ) λℓT ℓ+1 = (1− λ) 
ℓ=0 

Geometrically weighted sum of powers of T . 

• Note that T ℓ is a contraction with modulus 
αℓ, with respect to the weighted Euclidean norm 
I·Iξ, where ξ is the steady-state probability vector 
of the Markov chain. 

• Hence T (λ) is a contraction with modulus 

∞ 

α(1− λ)
αℓ+1λℓ =αλ = (1− λ) 

1− αλ 
ℓ=0 

Note that αλ → 0 as λ → 1 

• T ℓ and T (λ) have the same fixed point Jµ and 

1
∗IJµ − ΦrλIξ ≤ � IJµ −ΠJµIξ 

1− α2 
λ 

∗where Φr is the fixed point of ΠT (λ).λ 

∗• The fixed point Φr depends on λ.
λ 

∑

∑
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BIAS-VARIANCE TRADEOFF
 

Subspace S = {Φr | r ∈ ℜs} 

Jµ 

Simulation error 
ΠJµ 

Bias 

λ = 0 

λ = 1 

Solution of projected equation 

Simulation error 

Φr = ΠT (λ)(Φr) 

Φr ∗ 
λ
: 

∗ √ 1• Error bound IJµ−Φr Iξ ≤ 
1−α2 

IJµ−ΠJµIξλ
λ 

• As λ ↑ 1, we have αλ ↓ 0, so error bound (and 
the quality of approximation) improves as λ ↑ 1. 
In fact 

∗lim Φr = ΠJµλ
λ↑1 

• But the simulation noise in approximating 
∞ 

T (λ) λℓT ℓ+1 = (1− λ) 
ℓ=0 

increases 

• Choice of λ is usually based on trial and error
 

∑
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MULTISTEP PROJECTED EQ. METHODS
 

• The projected Bellman equation is 

Φr = ΠT (λ)(Φr) 

• In matrix form: C(λ)r = d(λ), where 

( )

C(λ) = Φ′Ξ I − αP (λ) Φ, d(λ) = Φ′Ξg(λ), 

with 
∞ ∞ 

αℓλℓP ℓ+1 P (λ) = (1− λ) , g(λ) = αℓλℓP ℓg 

ℓ=0 ℓ=0 

• The LSTD(λ) method is 
( (λ))−1 (λ)
Ck dk , 

(λ) (λ)
where C and d are simulation-based approx­k k 

imations of C(λ) and d(λ). 

• The LSPE(λ) method is 

( )(λ) (λ)
rk+1 = rk − γGk Ck rk − dk 

where Gk is a simulation-based approx. to (Φ′ΞΦ)−1 

• TD(λ): An important simpler/slower iteration 
[similar to LSPE(λ) with Gk = I - see the text]. 

∑ ∑
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MORE ON MULTISTEP METHODS
 

(λ) (λ)
• The simulation process to obtain C and dk k 

is similar to the case λ = 0 (single simulation tra­
jectory i0, i1, . . ., more complex formulas) 

k k 
(λ) 1 ( )′ 

C = φ(it) αm−tλm−t φ(im)−αφ(im+1)k k + 1 
t=0 m=t 

k k
1 

d
(λ) 

= φ(it) αm−tλm−tgimk k + 1 
t=0 m=t 

• In the context of approximate policy iteration, 
we can use optimistic versions (few samples be­
tween policy updates). 

• Many different versions (see the text). 

• Note the λ-tradeoffs: 
(λ) (λ)

− As λ ↑ 1, Ck and dk contain more “sim­
ulation noise”, so more samples are needed 
for a close approximation of rλ (the solution 
of the projected equation) 

− The error bound IJµ−ΦrλIξ becomes smaller 

− As λ ↑ 1, ΠT (λ) becomes a contraction for 
arbitrary projection norm 

∑ ∑

∑ ∑
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6.231 DYNAMIC PROGRAMMING
 

LECTURE 5
 

LECTURE OUTLINE
 

• Review of approximate PI based on projected 
Bellman equations 

• Issues of policy improvement 

− Exploration enhancement in policy evalua­
tion
 

− Oscillations in approximate PI
 

• Aggregation – An alternative to the projected 
equation/Galerkin approach 

• Examples of aggregation 

• Simulation-based aggregation 

• Relation between aggregation and projected 
equations 
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DISCOUNTED MDP
 

• System: Controlled Markov chain with states 
i = 1, . . . , n and finite set of controls u ∈ U(i) 

• Transition probabilities: pij(u) 

i j 

pij(u) 

pii(u) p j j(u ) 

pji(u) 

• Cost of a policy π = {µ0, µ1, . . .} starting at 
state i: 

  

N
 

( ) 

Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i = i0
N→∞ 

k=0 

with α ∈ [0, 1) 

• Shorthand notation for DP mappings 

n
 

( )

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n, 
u∈U(i) 

j=1 

n
 

( )( ( ) ) 

(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n 

j=1 

i j
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APPROXIMATE PI
 

Generate “Improved” Policy µ 

Initial Policy 

J̃µ(i, r) 
Evaluate Approximate Cost 

• Evaluation of typical policy µ: Linear cost func­
tion approximation 

J̃µ(r) = Φr 

where Φ is full rank n × s matrix with columns 
the basis functions, and ith row denoted φ(i)′ . 

• Policy “improvement” to generate µ: 
n 

( )

µ(i) = arg min pij(u) g(i, u, j) + αφ(j)′ r
u∈U(i) 

j=1 

∑

118



Set

Slope

Simulation error

Simulation error

)

= 0 0

. Φ

Solution of

∗

 

EVALUATION BY PROJECTED EQUATIONS
 

• Approximate policy evaluation by solving
 

Φr = ΠTµ(Φr)
 

Π: weighted Euclidean projection; special nature
 
of the steady-state distribution weighting. 

• Implementation by simulation (single long tra­
jectory using current policy - important to make 
ΠTµ a contraction). LSTD, LSPE methods. 

(λ)
• Multistep option: Solve Φr = ΠTµ (Φr) with 

∞ 

(λ) 
λℓT ℓ+1 Tµ = (1− λ) µ , 0 ≤ λ < 1 

ℓ=0 
(λ)

− As λ ↑ 1, ΠTµ becomes a contraction for 
any projection norm (allows changes in Π) 

− Bias-variance tradeoff 

Subspace S = {Φr | r ∈ ℜs} 

Jµ 

Simulation error 
ΠJµ 

Bias 

λ = 0 

λ = 1 

Solution of projected equation 

Simulation error 

Φr = ΠT (λ)(Φr) 

∑
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ISSUES OF POLICY IMPROVEMENT
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EXPLORATION
 

• 1st major issue: exploration. To evaluate µ, 
we need to generate cost samples using µ 

• This biases the simulation by underrepresenting 
states that are unlikely to occur under µ. 

• As a result, the cost-to-go estimates of these 
underrepresented states may be highly inaccurate, 
and seriously impact the “improved policy” µ. 

• This is known as inadequate exploration - a 
particularly acute difficulty when the randomness 
embodied in the transition probabilities is “rela­
tively small” (e.g., a deterministic system). 

• To deal with this we must change the sampling
 
mechanism and modify the simulation formulas.
 

• Solve 
Φr = ΠTµ(Φr) 

where Π is projection with respect to an exploration-
enhanced norm [uses a weight distribution ζ = 
(ζ1, . . . , ζn)]. 

• ζ is more “balanced” than ξ the steady-state 
distribution of the Markov chain of µ. 

• This also addresses any lack of ergodicity of µ.
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EXPLORATION MECHANISMS
 

• One possibility: Use multiple short simulation 
trajectories instead of single long trajectory start­
ing from a rich mixture of states. This is known 
as geometric sampling, or free-form sampling. 

− By properly choosing the starting states, we 
enhance exploration 

− The simulation formulas for LSTD(λ) and 
LSPE(λ) have to be modified to yield the so­

(λ)
lution of Φr = ΠTµ (Φr) (see the DP text) 

• Another possibility: Use a modified policy to 
generate a single long trajectory. This is called an 
off-policy approach. 

− Modify the transition probabilities of µ to 
enhance exploration 

− Again the simulation formulas for LSTD(λ) 
and LSPE(λ) have to be modified to yield 

(λ)
the solution of Φr = ΠTµ (Φr) (use of im­
portance sampling; see the DP text) 

• With larger values of λ > 0 the contraction
 
(λ)

property of ΠTµ is maintained. 

(λ)
• LSTD may be used without ΠTµ being a con­
traction ... LSPE and TD require a contraction. 
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POLICY ITERATION ISSUES: OSCILLATIONS
 

• 2nd major issue: oscillation of policies 

• Analysis using the greedy partition of the space 
of weights r: Rµ is the set of parameter vectors r 
for which µ is greedy with respect to J̃(·; r) = Φr 

Rµ = r | Tµ(Φr) = T (Φr) ∀ µ 

If we use r in Rµ the next “improved” policy is µ 

r µ k 

r µ k+1 

r µ k+2 

r µ k+3 

R µ k 

R µ k+1 

R µ k+2 

R µ k+3 

• If policy evaluation is exact, there is a finite 
number of possible vectors rµ, (one per µ) 

• The algorithm ends up repeating some cycle of 
policies µk, µk+1 , . . . , µk+m with 

r k ∈ R k+1 , r ∈ R k+2 , . . . , r k+m ∈ Rk+1 kµ µ µ µ µ µ

• Many different cycles are possible 
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2

MORE ON OSCILLATIONS/CHATTERING
 

• In the case of optimistic policy iteration a dif­
ferent picture holds (policy evaluation does not 
produce exactly rµ) 

r µ 1 

r µ 2 

r µ 3 

R µ 1 

R µ 2 

R µ 3 

• Oscillations of weight vector r are less violent, 
but the “limit” point is meaningless! 

• Fundamentally, oscillations are due to the lack
 
of monotonicity of the projection operator, i.e.,
 

′ ′J ≤ J does not imply ΠJ ≤ ΠJ . 

• If approximate PI uses an evaluation of the form
 

Φr = (WTµ)(Φr) 

with W : monotone and WTµ: contraction, the 
policies converge (to a possibly nonoptimal limit). 

• These conditions hold when aggregation is used
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AGGREGATION
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PROBLEM APPROXIMATION - AGGREGATION
 

• Another major idea in ADP is to approximate 
J∗ or Jµ with the cost-to-go functions of a simpler 
problem. 

• Aggregation is a systematic approach for prob­
lem approximation. Main elements: 

− Introduce a few “aggregate” states, viewed 
as the states of an “aggregate” system 

− Define transition probabilities and costs of 
the aggregate system, by relating original 
system states with aggregate states 

−	 Solve (exactly or approximately) the “ag­
gregate” problem by any kind of VI or PI 
method (including simulation-based methods) 

• If R̂(y) is the optimal cost of aggregate state y, 
we use the approximation 

J∗(j) ≈ φjy R̂(y), ∀ j 
y 

where φjy are the aggregation probabilities, en­
coding the “degree of membership of j in the ag­
gregate state y” 

• This is a linear architecture: φjy are the features 
of state j 

∑
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1 2 3 4 5 6 7 8 9

HARD AGGREGATION EXAMPLE
 

• Group the original system states into subsets, 
and view each subset as an aggregate state 

• Aggregation probs.: φjy = 1 if j belongs to 
aggregate state y (piecewise constant approx). 

1 2 3 

4 5 6 

7 8 9 

x1 x2 

x3 x4 

Φ = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 0 0 0 
1 0 0 0 
0 1 0 0 
1 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 1 0 
0 0 0 1 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

• What should be the “aggregate” transition probs. 
out of x? 

• Select i ∈ x and use the transition probs. of i. 
But which i should I use? 

• The simplest possibility is to assume that all 
states i in x are equally likely. 

• A generalization is to randomize, i.e., use “dis­
aggregation probabilities” dxi: Roughly, the “de­
gree to which i is representative of x.” 
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according to with cost

S
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System States Aggregate States

�

Original Aggregate States

�

|

Original System States

Probabilities

�

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

�

Aggregation

Disaggregation Probabilities

Matrix D

pij(u),
ji

x y

AGGREGATION/DISAGGREGATION PROBS
 

dxi φjy Q 

Original 
System States 

Aggregate States 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

Matrix D Matrix Φ 

• Define the aggregate system transition proba­
bilities via two (somewhat arbitrary) choices. 

• For each original system state j and aggregate 
state y, the aggregation probability φjy 

− Roughly, the “degree of membership of j in 
the aggregate state y.” 

− In hard aggregation, φjy = 1 if state j be­
longs to aggregate state/subset y. 

• For each aggregate state x and original system 
state i, the disaggregation probability dxi 

− Roughly, the “degree to which i is represen­
tative of x.” 

• Aggregation scheme is defined by the two ma­
trices D and Φ. The rows of D and Φ must be 
probability distributions. 

according to pij(u), with cost
, j = 1i

), x ), y
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according to with cost

S
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), ),

System States Aggregate States

 

Original Aggregate States

 

|

Original System States

Probabilities

 

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

 

Aggregation

Disaggregation Probabilities

Matrix Matrix
pij(u),

ji

x y

Aggregate States

  

  

AGGREGATE SYSTEM DESCRIPTION
 

dxi φjy Q 

Original 
System States 

p̂xy(u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)φjy , 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

ĝ(x, u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)g(i, u, j) 

, g(i, u, j) 

• The transition probability from aggregate state 
x to aggregate state y under control u 

n n 

ˆp̂xy(u) = dxi pij(u)φjy, or P (u) = DP (u)Φ 
i=1 j=1 

where the rows of D and Φ are the disaggregation 
and aggregation probs. 

• The expected transition cost is 

n n 

ĝ(x, u) = dxi pij(u)g(i, u, j), or ĝ = DP (u)g 
i=1 j=1 

∑ ∑

∑ ∑

according to pij(u), with cost

S

, j = 1i

), x ), y

{

|

Original System States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

, g(i, u, j)
Matrix Matrix

{

|

Original System States Aggregate States
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Aggregate States
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AGGREGATE BELLMAN’S EQUATION
 

dxi φjy Q 

Original 
System States 

p̂xy(u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)φjy , 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

ĝ(x, u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)g(i, u, j) 

, g(i, u, j) 

• The optimal cost function of the aggregate prob­
lem, denoted R̂, is 

R̂(x) = min ĝ(x, u) + α p̂xy(u)R̂(y) , ∀ x 
u∈U 

y 

Bellman’s equation for the aggregate problem. 

• The optimal cost function J∗ of the original 
problem is approximated by J̃ given by 

˜ ˆJ(j) = φjy R(y), ∀ j 
y 

according to with cost

S

, = 1

), ),

System States Aggregate States

{

Original Aggregate States

{

|

Original System States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

Matrix Matrix

∑

∑

according to pij(u), with cost
, j = 1i

), x ), y

, g(i, u, j)
Matrix Matrix

{

|

Original System States Aggregate States
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EXAMPLE I: HARD AGGREGATION
 

• Group the original system states into subsets, 
and view each subset as an aggregate state 

• Aggregation probs.: φjy = 1 if j belongs to 
aggregate state y. 

1 2 3 

4 5 6 

7 8 9 

x1 x2 

x3 x4 

Φ = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 0 0 0 
1 0 0 0 
0 1 0 0 
1 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 1 0 
0 0 0 1 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

• Disaggregation probs.: There are many possi­
bilities, e.g., all states i within aggregate state x 
have equal prob. dxi. 

• If optimal cost vector J∗ is piecewise constant 
over the aggregate states/subsets, hard aggrega­
tion is exact. Suggests grouping states with “roughly 
equal” cost into aggregates. 

• A variant: Soft aggregation (provides “soft 
boundaries” between aggregate states). 
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Special Aggregate States Features
)

Special States FeaturesSpecial States Aggregate States

Feature Extraction Mapping Vector
Feature Mapping Feature Vector

States Aggregate StatesFeatures

Feature
Extraction

EXAMPLE II: FEATURE-BASED AGGREGATION
 

• Important question: How do we group states 
together? 

• If we know good features, it makes sense to
 
group together states that have “similar features”
 

• A general approach for passing from a feature-
based state representation to a hard aggregation-
based architecture 

• Essentially discretize the features and generate 
a corresponding piecewise constant approximation 
to the optimal cost function 

• Aggregation-based architecture is more power­
ful (it is nonlinear in the features) 

• ... but may require many more aggregate states 
to reach the same level of performance as the cor­
responding linear feature-based architecture 
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EXAMPLE III: REP. STATES/COARSE GRID
 

• Choose a collection of “representative” original 
system states, and associate each one of them with 
an aggregate state 

x 

j2 

j3 

j1 

y1 y2 

y3 

Original State Space 

Representative/Aggregate States 

• Disaggregation probabilities are dxi = 1 if i is 
equal to representative state x. 

• Aggregation probabilities associate original sys­
tem states with convex combinations of represen­
tative states 

j ∼ φjyy 

y∈A 

• Well-suited for Euclidean space discretization
 

• Extends nicely to continuous state space, in­
cluding belief space of POMDP 

∑
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φ

φ

EXAMPLE IV: REPRESENTATIVE FEATURES
 

• Here the aggregate states are nonempty subsets 
of original system states. Common case: Each Sx 

is a group of states with “similar features” 

Original State Space 

Aggregate States/Subsets 

Sx1 Sx2 

Sx3 

j 

j
i 

pij 

pij 

φjx1 

φjx2 

φjx3 

• Restrictions: 

− The aggregate states/subsets are disjoint. 

− The disaggregation probabilities satisfy dxi > 

0 if and only if i ∈ x. 

− The aggregation probabilities satisfy φjy = 1 
for all j ∈ y. 

• Hard aggregation is a special case: ∪xSx = 
{1, . . . , n} 

• Aggregation with representative states is a spe­
cial case: Sx consists of just one state 
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APPROXIMATE PI BY AGGREGATION
 

dxi φjy Q 

Original 
System States 

p̂xy(u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)φjy , 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

ĝ(x, u) = 
n � 

i=1 

dxi 

n � 

j=1 

pij (u)g(i, u, j) 

, g(i, u, j) 

• Consider approximate PI for the original prob­
lem, with policy evaluation done by aggregation.
 

• Evaluation of policy µ: J̃ = ΦR, where R = 
DTµ(ΦR) (R is the vector of costs of aggregate 
states for µ). Can be done by simulation. 

• Looks like projected equation ΦR = ΠTµ(ΦR) 
(but with ΦD in place of Π). 

• Advantage: It has no problem with oscillations.
 

• Disadvantage: The rows of D and Φ must be 
probability distributions. 

according to pij(u), with cost
, j = 1i

), x ), y

{

Original System States Aggregate States

{

|

Original System States Aggregate States

, g(i, u, j)
Matrix Matrix
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ADDITIONAL ISSUES OF AGGREGATION
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pij(u),
ji

x y

ALTERNATIVE POLICY ITERATION
 

• The preceding PI method uses policies that as­
sign a control to each aggregate state. 

• An alternative is to use PI for the combined 
system, involving the Bellman equations: 

n 

R∗(x) = dxi J̃0(i), ∀ x, 
i=1 

n 
( )

J̃0(i) = min pij(u) g(i, u, j)+αJ̃1(j) , i = 1, . . . , n, 
u∈U(i) 

j=1 

J̃1(j) = φjyR∗(y), j = 1, . . . , n.
 
y∈A
 

dxi φjy Q 

Original 
System States 

Aggregate States 

Disaggregation 
Probabilities 

Aggregation 
Probabilities 

Matrix D Matrix Φ 

• Simulation-based PI and VI are still possible.
 

∑

∑

,

∑

according to pij(u), with cost

S

, j = 1i

), x ), y

System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States

Probabilities

{

Aggregation

Disaggregation Probabilities

Probabilities

Disaggregation Probabilities

{

Aggregation

Disaggregation Probabilities

Matrix D
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RELATION OF AGGREGATION/PROJECTION
 

• Compare aggregation and projected equations
 

ΦR = ΦDT (ΦR), Φr = ΠT (Φr)
 

• If ΦD is a projection (with respect to some 
weighted Euclidean norm), then the methodology 
of projected equations applies to aggregation 

• Hard aggregation case: ΦD can be verified to be 
projection with respect to weights ξi proportional 
to the disaggregation probabilities dxi 

• Aggregation with representative features case: 
ΦD can be verified to be a semi-norm projection 
with respect to weights ξi proportional to dxi 

• A (weighted) Euclidean semi-norm is defined by
 
 

L
( )2nIJIξ = ξi J(i) , where ξ = (ξ1, . . . , ξn), i=1 

with ξi≥ 0. 

• If Φ′ΞΦ is invertible, the entire theory and 
algorithms of projected equations generalizes to 
semi-norm projected equations [including multi­
step methods such as LSTD/LSPE/TD(λ)]. 

• Reference: Yu and Bertsekas, “Weighted Bell­
man Equations and their Applications in Approxi­
mate Dynamic Programming,” MIT Report, 2012.
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DISTRIBUTED AGGREGATION I
 

• We consider decomposition/distributed solu­
tion of large-scale discounted DP problems by hard 
aggregation. 

• Partition the original system states into subsets 
S1, . . . , Sm. 

• Distributed VI Scheme: Each subset Sℓ 

− Maintains detailed/exact local costs 

J(i) for every original system state i ∈ Sℓ 

using aggregate costs of other subsets 
L 

− Maintains an aggregate cost R(ℓ) = i∈Sℓ 
dℓiJ(i) 

− Sends R(ℓ) to other aggregate states 

• J(i) and R(ℓ) are updated by VI according to 

Jk+1(i) = min Hℓ(i, u, Jk, Rk), ∀ i ∈ Sℓ 
u∈U(i) 

with Rk being the vector of R(ℓ) at time k, and 

n 

Hℓ(i, u, J, R) = pij(u)g(i, u, j) + α pij(u)J(j) 

j=1 j∈Sℓ 

+ α pij(u)R(ℓ ′ ) 

j∈Sℓ ′ , ℓ′=� ℓ 

∑ ∑

∑

′ 6
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DISTRIBUTED AGGREGATION II 

• Can show that this iteration involves a sup-
norm contraction mapping of modulus α, so it 
converges to the unique solution of the system of 
equations in (J,R) 

J(i) = min Hℓ(i, u, J,R), R(ℓ) = dℓiJ(i), 
u∈U(i) 

i∈Sℓ 

∀ i ∈ Sℓ, ℓ = 1, . . . ,m. 

• This follows from the fact that {dℓi | i = 
1, . . . , n} is a probability distribution. 

• View these equations as a set of Bellman equa­
tions for an “aggregate” DP problem. The differ­
ence is that the mapping H involves J(j) rather
 

( )

than R x(j) for j ∈ Sℓ. 

• In an asynchronous version of the method, the 
aggregate costs R(ℓ) may be outdated to account 
for communication “delays” between aggregate states. 

• Convergence can be shown using the general
 
theory of asynchronous distributed computation,
 
briefly described in the 2nd lecture (see the text).
 

∑
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6.231 DYNAMIC PROGRAMMING
 

LECTURE 6
 

LECTURE OUTLINE
 

• Review of Q-factors and Bellman equations for 
Q-factors 

• VI and PI for Q-factors 

• Q-learning - Combination of VI and sampling
 

• Q-learning and cost function approximation 

• Adaptive dynamic programming 

• Approximation in policy space 

• Additional topics 
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REVIEW
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DISCOUNTED MDP
 

• System: Controlled Markov chain with states 
i = 1, . . . , n and finite set of controls u ∈ U(i) 

• Transition probabilities: pij(u) 

i j 

pij(u) 

pii(u) p j j(u ) 

pji(u) 

• Cost of a policy π = {µ0, µ1, . . .} starting at 
state i: 

  

N
 

( ) 
Jπ(i) = lim E αkg ik, µk(ik), ik+1 | i = i0

N→∞ 
k=0 

with α ∈ [0, 1) 

• Shorthand notation for DP mappings 

n
 

( )

(TJ)(i) = min pij(u) g(i, u, j)+αJ(j) , i = 1, . . . , n, 
u∈U(i) 

j=1 

n
 

( )( ( ) ) 
(TµJ)(i) = pij µ(i) g i, µ(i), j +αJ(j) , i = 1, . . . , n 

j=1 

i j
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BELLMAN EQUATIONS FOR Q-FACTORS
 

• The optimal Q-factors are defined by 

n 
( )

Q∗(i, u) = pij(u) g(i, u, j) +αJ∗(j) , ∀ (i, u) 
j=1 

∗• Since J = TJ∗, we have J∗(i) = minu∈U(i) Q∗(i, u) 
so the optimal Q-factors solve the equation 

n � � 

Q∗(i, u) = pij(u) g(i, u, j) + α min Q∗(j, u′ ) 
′ u ∈U(j)

j=1 

• Equivalently Q∗ = FQ∗, where 

n � � 

(FQ)(i, u) = pij(u) g(i, u, j) + α min Q(j, u′ ) 
′ u ∈U(j)

j=1 

• This is Bellman’s Eq. for a system whose states 
are the pairs (i, u) 

• Similar mapping Fµ and Bellman equation for 
a policy µ: Qµ = FµQµ 

∑

∑

∑
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BELLMAN EQ FOR Q-FACTORS OF A POLICY
 

States 

(i, u) 

j 

pij (u) 

g(i, u, j) 

µ(j) 

� 
j, µ(j) 

� 

State­Control Pairs: Fixed Policy µ 

• Q-factors of a policy µ: For all (i, u) 

n 
( ( )) 

Qµ(i, u) = pij(u) g(i, u, j) + αQµ j, µ(j)

j=1
 

Equivalently Qµ = FµQµ, where 
n 

( ( )) 
(FµQ)(i, u) = pij(u) g(i, u, j) + αQ j, µ(j)

j=1 

• This is a linear equation. It can be used for 
policy evaluation. 

• Generally VI and PI can be carried out in terms 
of Q-factors. 

• When done exactly they produce results that 
are mathematically equivalent to cost-based VI 
and PI. 

)

State-Control Pairs States

) States p

j

)

v

j)

Case (

∑

∑
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WHAT IS GOOD AND BAD ABOUT Q-FACTORS
 

• All the exact theory and algorithms for costs 
applies to Q-factors 

− Bellman’s equations, contractions, optimal­
ity conditions, convergence of VI and PI
 

• All the approximate theory and algorithms for 
costs applies to Q-factors 

− Projected equations, sampling and exploration 
issues, oscillations, aggregation 

• A MODEL-FREE (on-line) controller imple­
mentation 

− Once we calculate Q∗(i, u) for all (i, u), 

µ ∗(i) = arg min Q∗(i, u), ∀ i 
u∈U(i) 

− Similarly, once we calculate a parametric ap­
proximation Q̃(i, u; r) for all (i, u), 

˜µ̃(i) = arg min Q(i, u; r), ∀ i 
u∈U(i) 

• The main bad thing: Greater dimension and 
more storage! (It can be used for large-scale prob­
lems only through aggregation, or other approxi­
mation.) 146



Q-LEARNING
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Q-LEARNING
 

• In addition to the approximate PI methods 
adapted for Q-factors, there is an important addi­
tional algorithm: 

−	 Q-learning, a sampled form of VI (a stochas­
tic iterative algorithm).
 

• Q-learning algorithm (in its classical form): 

− Sampling: Select sequence of pairs (ik, uk) 
[use any probabilistic mechanism for this, 
but all (i, u) are chosen infinitely often]. 

−	 Iteration: For each k, select jk according to
 
pik j(uk). Update just Q(ik, uk):
 

Qk+1(ik,uk) = (1− γk)Qk(ik, uk) 

+	 γk g(ik, uk, jk) + α min Qk(jk, u ′ ) 
u ′ ∈U(jk ) 

Leave unchanged all other Q-factors.
 

− Stepsize conditions: γk ↓ 0
 

•	 We move Q(i, u) in the direction of a sample of 

n 

(FQ)(i, u) = pij(u) g(i, u, j) + α min Q(j, u ′ ) 
′ u ∈U(j) 

j=1 

∑

( )
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NOTES AND QUESTIONS ABOUT Q-LEARNING
 

Qk+1(ik,uk) = (1− γk)Qk(ik, uk) 

+ γk g(ik, uk, jk) + α min Qk(jk, u ′ ) 
′ u ∈U(jk ) 

• Model free implementation. We just need a 
simulator that given (i, u) produces next state j 
and cost g(i, u, j) 

• Operates on only one state-control pair at a 
time. Convenient for simulation, no restrictions on 
sampling method. (Connection with asynchronous 
algorithms.) 

• Aims to find the (exactly) optimal Q-factors.
 

• Why does it converge to Q∗? 

• Why can’t I use a similar algorithm for optimal 
costs (a sampled version of VI)? 

• Important mathematical (fine) point: In the Q-
factor version of Bellman’s equation the order of 
expectation and minimization is reversed relative 
to the cost version of Bellman’s equation: 

n 
( )

J∗(i) = min pij(u) g(i, u, j) + αJ∗(j)
u∈U(i) 

j=1 

( )

∑
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CONVERGENCE ASPECTS OF Q-LEARNING
 

• Q-learning can be shown to converge to true/exact 
Q-factors (under mild assumptions). 

• The proof is sophisticated, based on theories of 
stochastic approximation and asynchronous algo­
rithms. 

• Uses the fact that the Q-learning map F : 

(FQ)(i, u) = Ej g(i, u, j) + αmin Q(j, u′ ) 
u ′ 

is a sup-norm contraction. 

• Generic stochastic approximation algorithm: 

− Consider generic fixed point problem involv­
ing an expectation: 

{ } 
x = Ew f(x,w) 

{ }

− Assume Ew f(x,w) is a contraction with 
respect to some norm, so the iteration 

{ } 
xk+1 = Ew f(xk, w) 

converges to the unique fixed point 
{ }

− Approximate Ew f(x,w) by sampling 
150



 

 

STOCH. APPROX. CONVERGENCE IDEAS
 

• Generate a sequence of samples {w1, w2, . . .}, 
and approximate the convergent fixed point iter­

{ }

ation xk+1 = Ew f(xk, w)

• At each iteration k use the approximation 

k
1 { }

xk+1 = f(xk, wt) ≈ Ew f(xk, w)
k 

t=1 

• Amajor flaw: it requires, for each k, the compu­
tation of f(xk, wt) for all values wt, t = 1, . . . , k. 

• This motivates the more convenient iteration
 

k
1 

xk+1 = f(xt, wt), k = 1, 2, . . . , 
k 

t=1 
that is similar, but requires much less computa­
tion; it needs only one value of f per sample wt. 

• By denoting γk = 1/k, it can also be written as 

xk+1 = (1− γk)xk + γkf(xk, wk), k = 1, 2, . . . 

• Compare with Q-learning, where the fixed point 
problem is Q = FQ 

{ }

(FQ)(i, u) = Ej g(i, u, j) + αmin Q(j, u′ )
′ u 

∑

∑
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Q-LEARNING COMBINED WITH OPTIMISTIC PI
 

• Each Q-learning iteration requires minimization 
over all controls u ′ ∈ U(jk): 

Qk+1(ik,uk) = (1− γk)Qk(ik, uk) 

+ γk g(ik, uk, jk) + α min Qk(jk, u ′ ) 
′ u ∈U(jk ) 

• To reduce this overhead we may consider re­
placing the minimization by a simpler operation 
using just the “current policy” µk 

• This suggests an asynchronous sampled version 
of the optimistic PI algorithm which policy eval­
uates by 

mkQk+1 = F
µk Qk, 

and policy improves by µ k+1(i) ∈ arg minu∈U(i) Qk+1(i, u) 

• This turns out not to work (counterexamples 
by Williams and Baird, which date to 1993), but 
a simple modification of the algorithm is valid 

• See a series of papers starting with 
D. Bertsekas and H. Yu, “Q-Learning and En­
hanced Policy Iteration in Discounted Dynamic 
Programming,” Math. of OR, Vol. 37, 2012, pp. 
66-94 

( )
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Q-FACTOR APPROXIMATIONS 

• We introduce basis function approximation: 

Q̃(i, u; r) = φ(i, u)′ r 

• We can use approximate policy iteration and 
LSTD/LSPE for policy evaluation 

• Optimistic policy iteration methods are fre­
quently used on a heuristic basis 

• An extreme example: Generate trajectory {(ik, uk) | 
k = 0, 1, . . .} as follows. 

• At iteration k, given rk and state/control (ik, uk): 

(1) Simulate next transition (ik, ik+1) using the
 
transition probabilities pikj(uk).
 

(2) Generate control uk+1 from 

˜uk+1 = arg min Q(ik+1, u, rk) 
u∈U(ik+1 ) 

(3) Update the parameter vector via 

rk+1 = rk − (LSPE or TD-like correction) 

• Complex behavior, unclear validity (oscilla­
tions, etc). There is solid basis for an important 
special case: optimal stopping (see text) 
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BELLMAN EQUATION ERROR APPROACH
 

• Another model-free approach for approximate 
evaluation of policy µ: Approximate Qµ(i, u) with 
Q̃µ(i, u; rµ) = φ(i, u)′ rµ, obtained from 

  2 
 rµ ∈ argmin  Φr − Fµ(Φr) ξr

where I · Iξ is Euclidean norm, weighted with re­
spect to some distribution ξ. 

• Implementation for deterministic problems: 

(1) Generate a large set of sample pairs (ik, uk), 
and corresponding deterministic costs g(ik, uk) 

( )

and transitions jk, µ(jk) (a simulator may 
be used for this). 

(2) Solve the linear least squares problem: 

  

( ( )′ )
2 

  

min 
 
φ(ik, uk)′ r − g(ik, uk) + αφ jk, µ(jk) r

 

r
 
(ik ,uk )


• For stochastic problems a similar (more com­
plex) least squares approach works. It is closely
 
related to LSTD (but less attractive; see the text).
 

• Because this approach is model-free, it is often 
used as the basis for adaptive control of systems 
with unknown dynamics. 

∑

154



ADAPTIVE CONTROL BASED ON ADP
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LINEAR-QUADRATIC PROBLEM
 

• System: xk+1 = Axk+Buk, xk ∈ ℜn , uk ∈ ℜm 

�

∞ ′ ′• Cost: (x Qxk + u Ruk), Q ≥ 0, R > 0k=0 k k

• Optimal policy is linear: µ ∗(x) = Lx 

• The Q-factor of each linear policy µ is quadratic:
 

x 
Qµ(x, u) = (x ′ u ′ )Kµ (∗)

u 

• We will consider A and B unknown 

• We represent Q-factors using as basis func­
tions all the quadratic functions involving state 
and control components 

xixj , uiuj , xiuj , ∀ i, j 

These are the “rows” φ(x, u)′ of Φ 

• The Q-factor Qµ of a linear policy µ can be ex­
actly represented within the approximation sub-
space: 

Qµ(x, u) = φ(x, u)′ rµ 

where rµ consists of the components of Kµ in (*)
 

( )
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PI FOR LINEAR-QUADRATIC PROBLEM
 

• Policy evaluation: rµ is found by the Bellman 
error approach 

( ( )′ ) 2 

min φ(xk, uk) 
′ 
r − x 

′ 
kQxk + u ′ kRuk + φ xk+1, µ(xk+1) r

r 
(xk ,uk) 

where (xk, uk, xk+1) are many samples generated 
by the system or a simulator of the system. 

• Policy improvement: 

( )

µ(x) ∈ argmin φ(x, u)′ rµ
u 

• Knowledge of A and B is not required 

• If the policy evaluation is done exactly, this 
becomes exact PI, and convergence to an optimal 
policy can be shown 

• The basic idea of this example has been gener­
alized and forms the starting point of the field of
 
adaptive dynamic programming 

• This field deals with adaptive control of continuous-
space, (possibly nonlinear) dynamic systems, in 
both discrete and continuous time 

∑
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APPROXIMATION IN POLICY SPACE
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APPROXIMATION IN POLICY SPACE
 

• We parametrize policies by a vector r = (r1, . . . , rs) 
(an approximation architecture for policies). 

{ }

• Each policy µ̃(r) = µ̃(i; r) | i = 1, . . . , n
defines a cost vector Jµ̃(r) (a function of r). 

• We optimize some measure of Jµ̃(r) over r. 

• For example, use a random search, gradient, or 
other method to minimize over r 

n 

ξiJµ̃(r)(i), 
i=1 

where ξ1, . . . , ξn are some state-dependent weights. 

• An important special case: Introduce cost ap­
proximation architecture V (i; r) that defines indi­
rectly the parametrization of the policies 

n 
( )

µ̃(i; r) = arg min pij(u) g(i, u, j)+αV (j; r) , ∀ i 
u∈U(i) 

j=1 

• This introduces state features into approxima­
tion in policy space. 

• A policy approximator is called an actor, while a 
cost approximator is also called a critic. An actor 
and a critic may coexist. 

∑

∑
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APPROXIMATION IN POLICY SPACE METHODS
 

• Random search methods are straightforward 
and have scored some impressive successes with 
challenging problems (e.g., tetris). 

− At a given point/r they generate a random 
collection of neighboring r. They search within 
the neighborhood for better points. 

− Many variations (the cross entropy method 
is one). 

− They are very broadly applicable (to discrete 
and continuous search spaces). 

− They are idiosynchratic. 

• Gradient-type methods (known as policy gra­
dient methods) also have been used extensively. 

− They move along the gradient with respect 
to r of 

n 

ξiJµ̃(r)(i) 
i=1 

− There are explicit gradient formulas which 
can be approximated by simulation. 

− Policy gradient methods generally suffer by 
slow convergence, local minima, and exces­
sive simulation noise. 

∑
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� �

COMBINATION WITH APPROXIMATE PI
 

• Another possibility is to try to implement PI 
within the class of parametrized policies. 

• Given a policy/actor µ(i; rk), we evaluate it 
(perhaps approximately) with a critic that pro­
duces J̃µ, using some policy evaluation method. 

• We then consider the policy improvement phase
 

n 
( )

µ(i) ∈ argmin pij(u) g(i, u, j) + αJ̃µ(j) , ∀ i 
u 

j=1 

and do it approximately via parametric optimiza­
tion 

n n 
( ) ( )

min ξi pij µ(i; r) g i, µ(i; r), j +αJ̃µ(j) 
r 

i=1 j=1 

where ξi are some weights. 

• This can be attempted by a gradient-type method 
in the space of the parameter vector r. 

• 

• Many unresolved theoretical issues, particularly 
for stochastic problems. 

∑

∑ ∑

( )
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• Schemes like this have been extensively applied
to continuous-space deterministic problems.



FINAL WORDS
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TOPICS THAT WE HAVE NOT COVERED
 

• Extensions to discounted semi-Markov, stochas­
tic shortest path problems, average cost problems, 
sequential games ... 

• Extensions to continuous-space problems 

• Extensions to continuous-time problems 

• Adaptive DP - Continuous-time deterministic 
optimal control. Approximation of cost function 
derivatives or cost function differences 

• Random search methods for approximate policy 
evaluation or approximation in policy space 

• Basis function adaptation (automatic genera­
tion of basis functions, optimal selection of basis 
functions within a parametric class) 

• Simulation-based methods for general linear 
problems, i.e., solution of linear equations, linear 
least squares, etc - Monte-Carlo linear algebra 
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CONCLUDING REMARKS
 

• There is no clear winner among ADP methods
 

• There is interesting theory in all types of meth­
ods (which, however, does not provide ironclad 
performance guarantees) 

• There are major flaws in all methods: 

− Oscillations and exploration issues in approx­
imate PI with projected equations 

− Restrictions on the approximation architec­
ture in approximate PI with aggregation 

− Flakiness of optimization in policy space ap­
proximation 

• Yet these methods have impressive successes 
to show with enormously complex problems, for 
which there is often no alternative methodology 

• There are also other competing ADP methods 
(rollout is simple, often successful, and generally 
reliable; approximate LP is worth considering) 

• Theoretical understanding is important and 
nontrivial 

• Practice is an art and a challenge to our cre­
ativity! 164
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