6.231 DYNAMIC PROGRAMMING
LECTURE 9

LECTURE OUTLINE

Rollout algorithms

Policy improvement property
Discrete deterministic problems
Approximations of rollout algorithms
Model Predictive Control (MPC)
Discretization of continuous time
Discretization of continuous space

Other suboptimal approaches



ROLLOUT ALGORITHMS

e One-step lookahead policy: At each k and state
x, use the control i, (xx) that

min E{gk(azk, Uk, Wk) + jk—|—1 (fk(ivk, Uk, wk)) }7
up €U (z},)

where
— jN = (gnN.
—J k+1: approximation to true cost-to-go Ji41

e Rollout algorithm: When J} is the cost-to-go of
some heuristic policy (called the base policy)

e Policy improvement property (to be shown):
The rollout algorithm achieves no worse (and usu-
ally much better) cost than the base heuristic start-
ing from the same state.

e Main difficulty: Calculating J(zx) may be com-
putationally intensive if the cost-to-go of the base
policy cannot be analytically calculated.

— May involve Monte Carlo simulation if the
problem is stochastic.

— Things improve in the deterministic case.



EXAMPLE: THE QUIZ PROBLEM

e A person is given N questions; answering cor-
rectly question i has probability p;, reward wv;.
Quiz terminates at the first incorrect answer.

e Problem: Choose the ordering of questions so
as to maximize the total expected reward.

e Assuming no other constraints, it is optimal to
use the index policy: Answer questions in decreas-
ing order of p;v; /(1 — p;).

e With minor changes in the problem, the index
policy need not be optimal. Examples:

— A limit (< N) on the maximum number of
questions that can be answered.

— Time windows, sequence-dependent rewards,
precedence constraints.

e Rollout with the index policy as base policy:
Convenient because at a given state (subset of
questions already answered), the index policy and
its expected reward can be easily calculated.

e Very effective for solving the quiz problem and
important generalizations in scheduling (see Bert-
sekas and Castanon, J. of Heuristics, Vol. 5, 1999).



COST IMPROVEMENT PROPERTY

o Let
Jr(zr): Cost-to-go of the rollout policy

Hy(xx): Cost-to-go of the base policy

) We Claim that jk(a?k;) S Hk(:ck) fOI‘ all Tk, k

e Proof by induction: We have Jy(zny) = Hy(zn)
for all zn. Assume that

Jir1(Tre1) < Heo1(Tee1), ¥V Tgaa.

Let 7, (xx) and ui(zr) be the controls applied by
rollout and heuristic at x,. Then, for all zx

Ji(x) = E{gk (xk,ﬁk(l‘k),wk) + Tkt (fk (xk’ﬂ’f(xk)’wk))}
< E{ gk (2, B (@r), wr ) + Heg1 (i (0, g (2n), wie) ) }
< E{gr (@, i (@r), we) + Herr (Fu (2, e (2n), wi) ) §
= Hp(zy)

— Induction hypothesis ==> 1st inequality
— Min selection of 7, (xx) ==> 2nd inequality
— Definition of Hy, ur ==> last equality
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DISCRETE DETERMINISTIC PROBLEMS

e Any discrete optimization problem can be repre-
sented sequentially by breaking down the decision
process into stages.

e A tree/shortest path representation. The leaves
of the tree correspond to the feasible solutions.

e LExample: Traveling salesman problem. Find a
minimum cost tour through N cities.

A Origin Node s

AB AC AD

ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Traveling salesman problem with four cities A, B, C, D
e Complete partial solutions, one stage at a time

e May apply rollout with any heuristic that can
complete a partial solution

e No costly stochastic simulation needed



EXAMPLE: THE BREAKTHROUGH PROBLEM

root

e Given a binary tree with N stages.
e Each arc is free or is blocked (crossed out)

e Problem: Find a free path from the root to the
leaves (such as the one shown with thick lines).

e Base heuristic (greedy): Follow the right branch
if free; else follow the left branch if free.

e This is a rare rollout instance that admits a
detailed analysis.

e For large N and given prob. of free branch:
the rollout algorithm requires O(N) times more
computation, but has O(N) times larger prob. of
finding a free path than the greedy algorithm.



DET. EXAMPLE: ONE-DIMENSIONAL WALK

e A person takes either a unit step to the left or
a unit step to the right. Minimize the cost g(i) of
the point 7 where he will end up after N steps.

(0,0)

e Base heuristic: Always go to the right. Rollout
finds the rightmost local minimum.

e Alternative base heuristic: Compare always go
to the right and always go the left. Choose the
best of the two. Rollout finds a global minimum.



A ROLLOUT ISSUE FOR DISCRETE PROBLEMS

e The base heuristic need not constitute a policy
in the DP sense.

e Reason: Depending on its starting point, the
base heuristic may not apply the same control at
the same state.

e As a result the cost improvement property may
be lost (except if the base heuristic has a property
called sequential consistency; see the text for a
formal definition).

e The cost improvement property is restored in
two ways:

— The base heuristic has a property called se-
quential improvement which guarantees cost
reduction at each step (see the text for a for-
mal definition).

— A variant of the rollout algorithm, called for-
tified rollout, is used, which enforces cost
improvement. Roughly speaking the “best”
solution found so far is maintained, and it
is followed whenever at any time the stan-
dard version of the algorithm tries to follow
a “worse” solution (see the text).



ROLLING HORIZON WITH ROLLOUT

e We can use a rolling horizon approximation in
calculating the cost-to-go of the base heuristic.

e Because the heuristic is suboptimal, the ratio-
nale for a long rolling horizon becomes weaker.

e [ixample: N-stage stopping problem where the
stopping cost is 0, the continuation cost is either
—e or 1, where 0 < ¢ << 1, and the first state
with continuation cost equal to 1 is state m. Then
the optimal policy is to stop at state m, and the
optimal cost is —me.

RS

Stopped State )

e Consider the heuristic that continues at every
state, and the rollout policy that is based on this
heuristic, with a rolling horizon of ¢ < m steps.

e It will continue up to the first m — £ + 1 stages,
thus compiling a cost of —(m —£+1)e. The rollout
performance improves as | becomes shorter!

e Limited vision may work to our advantage!
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MODEL PREDICTIVE CONTROL (MPC)

e Special case of rollout for linear deterministic
systems (similar extensions to nonlinear /stochastic)

— System: zpi1 = Axy + Buy
— Quadratic cost per stage: x.Qxx + uj Rug
— Constraints: z, € X, ux € U(zy)
e Assumption: For any zo € X there is a feasible

state-control sequence that brings the system to 0
in m steps, 1.e., ,, =0

e MPC at state x, solves an m-step optimal con-
trol problem with constraint xy.,, = 0, i.e., finds

a sequence ug,...,Ur+m—1 that minimizes
m—1
/ /
E <$k+eQ$k+e + Uk;—|—£Ruk—|—£)
¢=0

subject to xxirm =0

e Then applies the first control u, (and repeats
at the next state xy41)

e MPC is rollout with heuristic derived from the
corresponding m — 1-step optimal control problem

e Key Property of MPC: Since the heuristic is sta-
ble, the rollout is also stable (suggested by policy
improvement property; see the text).
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DISCRETIZATION

e If the time, and/or state space, and/or control
space are continuous, they must be discretized.

e (Consistency issue, i.e., as the discretization be-
comes finer, the cost-to-go functions of the dis-
cretized problem should converge to those of the
original problem.

e Pitfall with discretizing continuous time: The
control constraint set may change a lot as we pass
to the discrete-time approximation.

e [Example: Consider the system #(¢) = u(t), with
control constraint u(t) € {—1,1}. The reachable
states after time ¢ are z(t + 6) = x(t) + u, with
u € [—4,9].

e Compare it with the reachable states after we
discretize the system naively: z(t+4§) = x(t)+du(t),
with u(t) € {—1,1}.

e “Convexification effect” of continuous time: a
discrete control constraint set in continuous-time
differential systems, is equivalent to a continuous
control constraint set when the system is looked
at discrete times.
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SPACE DISCRETIZATION

e Given a discrete-time system with state space
S, consider a finite subset S; for example S could
be a finite grid within a continuous state space S.

o Difficulty: f(z,u,w) ¢ S for z € S.

e We define an approximation to the original
problem, with state space S, as follows:

e Express each x € S as a convex combination of
states in S, 1.e.,

x—quz x)x; Where ¢;(z) > 0, Zgbz =

e Define a “reduced” dynamic system with state
space S, whereby from each z; € S we move to
z = f(xi,u,w) according to the system equation
of the original problem, and then move to z; € S
with probabilities ¢; (7).

e Define similarly the corresponding cost per stage
of the transitions of the reduced system.

e Note application to finite-state POMDP (dis-
cretization of the simplex of the belief states).
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SPACE DISCRETIZATION/AGGREGATION

o Let Jp(z;) be the optimal cost-to-go of the “re-
duced” problem from each state x; € S and time
k onward.

e Approximate the optimal cost-to-go of any z € S
for the original problem by

Je(z) =) ¢i(a)Tn(w:),

CB,[:ES
and use one-step-lookahead based on Jy.

e The coefficients ¢;(x) can be viewed as features
in an aggregation scheme.

e Important question: Consistency, i.e., as the
number of states in S increases, Jx(z) should con-
verge to the optimal cost-to-go of the original prob.

e Interesting observation: While the original prob-
lem may be deterministic, the reduced problem is
always stochastic.

o Generalization: The set S may be any finite set
(not a subset of S) as long as the coefficients ¢;(x)
admit a meaningful interpretation that quantifies
the degree of association of z with z; (a form of
aggregation).

13



OTHER SUBOPTIMAL APPROACHES

¢ Minimize the DP equation error (Fitted Value
Iteration): Approximate Jy(zx) with Jg(z, %), where
rr 1S a parameter vector, chosen to minimize some
form of error in the DP equations

— Can be done sequentially going backwards
in time (approximate J, using an approxi-
mation of Jxi1, starting with Jy = gn).

e Direct approximation of control policies: For a
subset of states z*, i1 =1,...,m, find

() =arg min B{g(a’,ue, we)
ukEUk(:CZ)

+ Jha1 (fk:(xiyuk:,wk:),rk—i—l)}

Then find fix(zk, sk), where s, is a vector of pa-
rameters obtained by solving the problem

min y |l (2") — (", 5)]
1=1

e Approximation in policy space: Do not bother
with cost-to-go approximations. Parametrize the
policies as [ix(xk, sx), and minimize the cost func-
tion of the problem over the parameters s, (ran-
dom search is a possibility).
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