6.231 DYNAMIC PROGRAMMING
LECTURE 7

LECTURE OUTLINE

e DP for imperfect state info
e Sufficient statistics

e (Conditional state distribution as a sufficient
statistic

e Finite-state systems

e Examples



REVIEW: IMPERFECT STATE INFO PROBLEM

e Instead of knowing xx, we receive observations

z0o = ho(xo,v0), 2k = hr(xk,uk—1,v%), k>0

e [.: information vector available at time k:

Io =20, I = (20,21, 2k, U0, UL, ..., Uk—1), k>1

e Optimization over policies 7 = {uo, p1,..., un—17,
where ux(Ix) € Uy, for all I, and k.

e Find a policy = that minimizes

Jr = E {gN(CCN)+ ng(xk,uk;(]k),wk)}

k=0
subject to the equations

Lk4+1 = fk (:'Ckaluk(lk)awk)a k Z 07

z0 = ho(xo,v0), zr = hg (ﬂfk,uk—l(fk—l),vk), kE>1



DP ALGORITHM

e DP algorithm:
Jk([k) = min { E {gk(xk,uk,wk)
upCUk Lag, w249

+ Jr+1 (T, 2k+1, uk) | Ik, uk}}

for k=0,1,...,N -2, and for k=N — 1,

INn—1(UNn=1) = min E {QN—l(xN—la’UJN—lawN—l)
uN—1€UN—-1 | zny_1,wN_1

+ 9N (fN—l(ﬂfN—1,uN—1,wN—1)) | INla’UJNl}:|

e The optimal cost J* is given by

J” zg{Jo(zo)}.



SUFFICIENT STATISTICS

e Suppose there is a function Sk (I) such that the
min in the right-hand side of the DP algorithm can
be written in terms of some function Hj as

uinelgk Hy, (Sk(lk)auk)

e Such a function S is called a sufficient statistic.

e An optimal policy obtained by the preceding
minimization can be written as

pi(Ie) = T, (Sk (k).

where 71, is an appropriate function.
e Example of a sufficient statistic: Sk (Ix) = I

e Another important sufficient statistic

Sk(Uk) = Poy 1y,

assuming that v, is characterized by a probability
distribution Pfuk ( | LThk—1,UL—1, wk_l)



DP ALGORITHM IN TERMS OF Px, 1,

o Filtering Equation: P, ;_ is generated recur-
sively by a dynamic system (estimator) of the form

ka:—l—llfk—kl — @k(ka|Ik7uk7Zk+l)

for a suitable function @,

e DP algorithm can be written as

YkSYE Lo, w2k

—|—7k_|_1 (CI)k:(kaukauka Zk‘l-l)) ’ Ik’uk}i|

e It is the DP algorithm for a new problem whose
state is P,, |7, (also called belief state)
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EXAMPLE: A SEARCH PROBLEM

e At each period, decide to search or not search
a site that may contain a treasure.

e If we search and a treasure is present, we find
it with prob. g and remove it from the site.

e Treasure’s worth: V. Cost of search: C
e States: treasure present & treasure not present

e Fach search can be viewed as an observation of
the state

e Denote
pr . prob. of treasure present at the start of time k

with po given.

e p; evolves at time k according to the equation

(P if not search,
prs1 =4 0 if search and find treasure,
Py U—F) if search and no treasure
\ Pr(1=8)+1—-pg ‘

This is the filtering equation.



SEARCH PROBLEM (CONTINUED)

e DP algorithm

J1(pr) = max {O, —C + prBV

+ (1 = prB) k11 (pk(lp_k(ﬁl);ﬁl)_ pk> :|7

with Tx(pn) = 0.

e Can be shown by induction that the functions
J 1 satisfy

y
|4

|
™

=0 1if pkﬁéia

Jre(Pr) 4

: C
>0 if pr > 55

™

e Furthermore, it is optimal to search at period
k if and only if
prBV > C

(expected reward from the next search > the cost
of the search - a myopic rule)



FINITE-STATE SYSTEMS - POMDP

e Suppose the system is a finite-state Markov
chain, with states 1,...,n.

e Then the conditional probability distribution

Py 1, 1S an n-vector

(P(xk:1|lk),,P(:ck:n|Ik))

e The DP algorithm can be executed over the n-
dimensional simplex (state space is not expanding
with increasing k)

e When the control and observation spaces are
also finite sets the problem is called a POMDP
(Partially Observed Markov Decision Problem).

e For POMDP it turns out that the cost-to-go
functions J, in the DP algorithm are piecewise
linear and concave (Exercise 5.7)

e Useful in practice both for exact and approxi-
mate computation.



INSTRUCTION EXAMPLE 1

e Teaching a student some item. Possible states
are L: Item learned, or L: Item not learned.

e Possible decisions: T: Terminate the instruc-
tion, or T: Continue the instruction for one period
and then conduct a test that indicates whether the
student has learned the item.

e Possible test outcomes: R: Student gives a cor-
rect answer, or R: Student gives an incorrect an-
Swer.

e Probabilistic structure

e Cost of instruction: I per period

e (Cost of terminating instruction: 0 if student
has learned the item, and C > 0 if not.



INSTRUCTION EXAMPLE II

e Let pi: prob. student has learned the item given
the test results so far

Pk :P(xk :L|Zo,21,...,zk).

e Filtering equation: Using Bayes’ rule

Pe+1 = q)(pk7 Zk—|—1)
1—(1—t)(1—py) : B
— 1—(1—t)(1—r)(1]ipk) lf Zk+4+1 = R7
0 if 241 = R.

e DP algorithm:

Jk(pr) = min [(1 —p)C, I+ E {Tey1(®0r, 2011)) }

ZE+4+1

starting with

jN—l(pN—l) = min[(l—pN_l)C, I—I—(l—t)(l—pN_l)C].

10



INSTRUCTION EXAMPLE III

e Write the DP algorithm as

Jr(pr) = min{(1 = pr)C, T + Ax(pr)],

where

Ay(pr) = P(zk41 = R | Ir) Jii1 (®(pr, R))
+ P(zk41 = R | Ix) i1 (®(pr, R))

e Can show by induction that Ax(p) are piecewise
linear, concave, monotonically decreasing, with

Ar-1(p) < Ai(p) < Art1(p); for all p € [0, 1].

(The cost-to-go at knowledge prob. p increases as
we come closer to the end of horizon.)

I+Ay_1(P)
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