
6.231 DYNAMIC PROGRAMMING

LECTURE 7

LECTURE OUTLINE

• DP for imperfect state info

• Sufficient statistics

• Conditional state distribution as a sufficient
statistic

• Finite-state systems

• Examples
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REVIEW: IMPERFECT STATE INFO PROBLEM

• Instead of knowing xk, we receive observations

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k ≥ 0

• Ik: information vector available at time k:

I0 = z0, Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k ≥ 1

• Optimization over policies π = {µ0, µ1, . . . , µN−1},
where µk(Ik) ∈ Uk, for all Ik and k.

• Find a policy π that minimizes
{

N−1

Jπ = E gN (xN ) +
∑

gk xk, µk(Ik), wk
x ,w ,v0 k k

k=0,...,N−1 k=0

}

( )

subject to the equations

xk+1 = fk
(

xk, µk(Ik), wk

)

, k ≥ 0,

z0 = h0(x0, v0), zk = hk

(

xk, µk−1(Ik−1), vk
)

, k ≥ 1
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DP ALGORITHM

• DP algorithm:

Jk(Ik) = min
u ∈Uk k

[

E gk(xk, uk, wk)
x ,w , zk k k+1

{

+ Jk+1(Ik, zk+1, uk) | Ik, uk

]

for k = 0, 1, . . . , N − 2, and for k = N − 1,

}

JN−1(IN−1) = min E gN−1(xN−1, uN−1, wN−1)
uN−1∈UN−1

[

xN−1, wN−1

{

+ gN
(

fN−1(xN−1, uN−1, wN−1)
)

| IN−1, uN−1

]

}

• The optimal cost J∗ is given by

J∗ = E
z0

{

J0(z0)
}

.
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SUFFICIENT STATISTICS

• Suppose there is a function Sk(Ik) such that the
min in the right-hand side of the DP algorithm can
be written in terms of some function Hk as

min Hk
u ∈Uk k

(

Sk(Ik), uk

)

• Such a function Sk is called a sufficient statistic.

• An optimal policy obtained by the preceding
minimization can be written as

µ∗
k(Ik) = µk

(

Sk(Ik)
)

,

where µk is an appropriate function.

• Example of a sufficient statistic: Sk(Ik) = Ik

• Another important sufficient statistic

Sk(Ik) = Px |I ,
k k

assuming that vk is characterized by a probability
distribution Pvk

(· | xk−1, uk−1, wk−1)
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DP ALGORITHM IN TERMS OF PX |IK K

• Filtering Equation: Px |Ik k
is generated recur-

sively by a dynamic system (estimator) of the form

Px |I = Φk Px |I , uk, zk+1k+1 k+1 k k

for a suitable function Φ

(

k

)

• DP algorithm can be written as

Jk(Px |I ) = min
[

E
{

gk(xk, uk, wk)k k u ∈Uk k x ,w ,zk k k+1

+ Jk+1

(

Φk(Px |I , uk, zk+1) | Ik, ukk k

• It is the DP algorithm for a new pro

)

blem wh

}

o

]

se
state is Px |Ik k

(also called belief state)

uk xk

Delay

Estimator

uk  - 1

uk  - 1

vk

zk

zk

wk

φk  - 1

Actuator

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk  - 1,vk)

System Measurement

P x
k
| I
k

µ
k
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EXAMPLE: A SEARCH PROBLEM

• At each period, decide to search or not search
a site that may contain a treasure.

• If we search and a treasure is present, we find
it with prob. β and remove it from the site.

• Treasure’s worth: V . Cost of search: C

• States: treasure present & treasure not present

• Each search can be viewed as an observation of
the state

• Denote

pk : prob. of treasure present at the start of time k

with p0 given.

• pk evolves at time k according to the equation

p

p



k if not search,

k+1 =



0 if search and find treasure,


p (1−β)k
p (1−β)+1−p

if search and no treasure.
k k

This is the filtering equation.
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SEARCH PROBLEM (CONTINUED)

• DP algorithm

Jk(pk) = max
[

0, −C + pkβV

+ (1− pkβ)
p

Jk+1

(

k(1− β)
,

pk(1− β) + 1− pk

)

]

with JN (pN ) = 0.

• Can be shown by induction that the functions
Jk satisfy

=
Jk(pk)



 0 if pk ≤ C



βV
,

> 0 if pk > C
βV

.

• Furthermore, it is optimal to search at period
k if and only if

pkβV ≥ C

(expected reward from the next search ≥ the cost
of the search - a myopic rule)
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FINITE-STATE SYSTEMS - POMDP

• Suppose the system is a finite-state Markov
chain, with states 1, . . . , n.

• Then the conditional probability distribution
Px |Ik k

is an n-vector

(

P (xk = 1 | Ik), . . . , P (xk = n | Ik)
)

• The DP algorithm can be executed over the n-
dimensional simplex (state space is not expanding
with increasing k)

• When the control and observation spaces are
also finite sets the problem is called a POMDP
(Partially Observed Markov Decision Problem).

• For POMDP it turns out that the cost-to-go
functions Jk in the DP algorithm are piecewise
linear and concave (Exercise 5.7)

• Useful in practice both for exact and approxi-
mate computation.
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INSTRUCTION EXAMPLE I

• Teaching a student some item. Possible states
are L: Item learned, or L: Item not learned.

• Possible decisions: T : Terminate the instruc-
tion, or T : Continue the instruction for one period
and then conduct a test that indicates whether the
student has learned the item.

• Possible test outcomes: R: Student gives a cor-
rect answer, or R: Student gives an incorrect an-
swer.

• Probabilistic structure

L L R

rt

1 1

1 - r1 - t
L RL

• Cost of instruction: I per period

• Cost of terminating instruction: 0 if student
has learned the item, and C > 0 if not.
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INSTRUCTION EXAMPLE II

• Let pk: prob. student has learned the item given
the test results so far

pk = P (xk = L | z0, z1, . . . , zk).

• Filtering equation: Using Bayes’ rule

pk+1 = Φ(pk, zk+1)

=

{

1−(1−t)(1−p )k
1−(1−t)(1−r)(1−pk)

if zk+1 = R,

0 if zk+1 = R.

• DP algorithm:

Jk(pk) = min

[

(1− pk)C, I + E
zk+1

{

Jk+1

(

Φ(pk, zk+1)
)}

]

starting with

JN−1(pN−1) = min
[

(1−pN−1)C, I+(1−t)(1−pN−1)C
]

.
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INSTRUCTION EXAMPLE III

• Write the DP algorithm as

Jk(pk) = min
[

(1− pk)C, I +Ak(pk)

w

]

,

here

Ak(pk) = P (zk+1 = R | Ik)Jk+1

(

Φ(pk, R)

+ P (zk+1 =

)

R | Ik)Jk+1

(

Φ(pk, R)

• Can show by induction that Ak(p) are piece

)

wise
linear, concave, monotonically decreasing, with

Ak−1(p) ≤ Ak(p) ≤ Ak+1(p), for all p ∈ [0, 1].

(The cost-to-go at knowledge prob. p increases as
we come closer to the end of horizon.)

0 p

C

I

I + AN - 1(p)

I + AN - 2(p)

I + AN - 3(p)

1a N - 1 a N - 3a N - 2 1 -
I

C
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