6.231 DYNAMIC PROGRAMMING
LECTURE 6

LECTURE OUTLINE

Problems with imperfect state info
Reduction to the perfect state info case
Linear quadratic problems

Separation of estimation and control



BASIC PROBL. W/ IMPERFECT STATE INFO

e Same as basic problem of Chapter 1 with one
difference: the controller, instead of knowing xz,
receives at each time k an observation of the form

20 — hO(CUO,'U()), Rk — hk(xkauk:—lavk)y k 2 1

e The observation z; belongs to some space Zx.

e The random observation disturbance vy is char-
acterized by a probability distribution

P,Uk(-‘xk,...,xg,uk_l,...,uo,wk_l,...,wo,vk_l,...,UO)

e The initial state zg is also random and charac-
terized by a probability distribution P, .

e The probability distribution Py, (- | z&, ux) of wy
is given, and it may depend explicitly on z; and
Uk but not on Wy .o, Wk—1,0V0y+-+,Vk—1-

e The control uy is constrained to a given subset
Uk (this subset does not depend on zx, which is
not assumed known).



INFORMATION VECTOR AND POLICIES

e Denote by I, the information vector, i.e., the
information available at time k:

Ik — (20,21,. e Rk, U0, UL, . .. ,uk_l), k Z 1,
Iy = 2o
e We consider policies m = {uo, p1, ..., un—1}, where

each pur maps I into a ug and
pr(Ix) € Ug, for all I, k>0

e We want to find a policy = that minimizes

:co,wk,'uk
k=0,...,N—1 k=0

Jr = E {gN(CEN)-I- ng(xk,uk([k),wk)}

subject to the equations
Ll+1 = fk: (xkauk(lk)awk)a k Z 07

20 = ho(Zo,v0), 2r = hi (wk,uk_l(lk_l),vk), k>1



REFORMULATION AS PERFECT INFO PROBL.

e System: We have

Ik+1:(lk,zk+1,uk), kZO,l,...,N—Q, ]():Z()
View this as a dynamic system with state I, con-
trol ug, and random disturbance zp1

e Disturbance: We have

P(Zk—f—l | [kHuk?) — P(Zk—f—l | Ik?7uk7z07217'°'7zk)7

since zo, 21, ..., 2z, are part of the information vec-
tor I. Thus the probability distribution of zxy;
depends explicitly only on the state I, and control
ur and not on the prior “disturbances” z, ..., 2o

e (Cost Function: Write
E{gk(a:k,Uk,wk)} = E{ E {gk(xk,m,ww | Ik»uk}}
Tl ,WE

so the cost per stage of the new system is

gk(lkauk) = b {gk(xkaukawk) | Ikauk}
Tp W



DP ALGORITHM

e Writing the DP algorithm for the (reformulated)
perfect state info problem:

Jk:([k:): min [ E {gk(xk,uk,wk)
ugp €U Lag, wy, 249

+ Je+1 (T, 2k41, uk) | Ik, Uk}}

for k=0,1,..., N -2, and for k=N — 1,
IN_1(UN—1) = min { E {QN—l(fEN—l,UN—1,wN—1)
un_1€UN_1 | zny_1,wN_1

+ 9N (fN—l(xN—lauN—lawN—l)) | IN1,UN1}}

e The optimal cost J* is given by

J* = g{JO(ZO)}



LINEAR-QUADRATIC PROBLEMS

° System: Tht1 = Az + Brur + we

e Quadratic cost

N—1
E {.’EQVQNCCN + Z("E%Qk;xk + U;nguk)}
N—1

Wi
k=0,1,..., k=0

where Qr > 0 and Rx > 0

e Observations
2z = Crxr + Vg, k=0,1,..., N —1

® wp,...,WN_1, Vo,...,Un_1 Indep. zero mean

e Key fact to show:
— Optimal policy {ug, ..., uxn_1} is of the form:

pr (k) = LeE{xy | I}

Li: same as for the perfect state info case

— Estimation problem and control problem can
be solved separately



DP ALGORITHM 1

e Last stage N — 1 (supressing index N — 1):

In-ln-1) = min | Boy gy {ohoQan
uUN_1
+uly_jRun_1+ (Azn_1+ Bun_1+wn_1)
- Q(Axn_1+ Bun_1 +wn_1) | IN—1,UN—1}}

® Since E{’UJN_l | IN_l,uN_l} — E{wN_l} — O,
the minimization involves

min [u?v_l(B/QB + R)un—1
UN -1
+2E{zN_1 | IN—l}/A/QBUN—l]
The minimization yields the optimal pi_q:
uny_1 =pn_1(In—1) = Ln_1E{zn-1 | IN-1}

where

Lyv_1=—(B'QB+R) 'B'QA



DP ALGORITHM II

e Substituting in the DP algorithm

IJNn_1(In21) = E {xgv_lKN—lxN—l | IN—l}

TN-—1

+ b {(xN—l—E{CUN—l | IN—l})/
TN—1

'PN—l(SUN—l — F{xn_1 | IN—1}) | IN—1}

+ F {w§V—1QNwN—1},
WN —1

where the matrices Ky_1 and Py_; are given by

Py_1=AN_1QNBN_1(Rn_1+ BN_1QNBnx_1)""
- Bn_1QNAN_1,
Knv_1=AN_1QNAN_1 — Pn_1+Qn_1

e Note the structure of Jy_1: in addition to the
quadratic and constant terms, it involves a (> 0)
quadratic in the estimation error

xn—1— F{en_1 | InN-1}



DP ALGORITHM III

e DP equation for period N — 2:

JN_Q(IN_Q) — min |: E {QZ'EV_QQmN_Q
UN_—2 TN—-2WN_-2,2N—1
+uy_oRun_o2+ JIn_1(IN—1) | ]N—27UN—2}}

= E{ZEE\;_QQJUN—2 | IN—Q}

+ min |:’U,3V_2R'U/N2
UN 2

+E{$§V_1KN_1JJN—1 | IN—27UN—2}}
/
+ B{ (en-1 — Ben—1 | In-1})
.PN_l(a’;N_l — FE{zn_1 | IN_1}) | IN—27UN—2}

—|_ E’wN_l{wEV_lQNwN—l}

e Key point: We have excluded the estimation
error term from the minimization over un—_»

e This term turns out to be independent of un_»



QUALITY OF ESTIMATION LEMMA

e C(Current estimation error is unaffected by past
controls: For every k, there is a function M s.t.

xr — E{xr | It} = Mg(zo,wo, ..., Wk—1,v0,...,Vk),

independently of the policy being used

e (onsequence: Using the lemma,

rn-1— E{zn_1 | IN-1} =&n-1,
where

€N—1: function of To,Woy.+., WN—-2,V0,...,UN—-1

e Since £ny-_7 is independent of uy_2, the condi-
tional expectation of £y Pnv_1&n_1 satisfies

E{ény_1PN—1én—1 | IN—2,un—2}
= E{&y_1Pn-1&n—-1 | IN—2}

and is independent of uyx_o.

e So minimization in the DP algorithm yields

UNn_o = U*N—Q(IN—Q) = Ln_2 E{CCN—Q | IN—z}
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FINAL RESULT

e Continuing similarly (using also the quality of
estimation lemma)

pi(Ik) = L E{wk | Ir},
where L; is the same as for perfect state info:
Ly = —(Ry + BpKy+1Br) ™' B K14y,
with K generated using the Riccati equation:
Ky = @n, Ky = Ay K41 Ar — P + Qx,
Py = A, Kri1Br(Ri + By Kiy1Br) "B K1 Ak
" 5
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SEPARATION INTERPRETATION

e The optimal controller can be decomposed into

(a) An estimator, which uses the data to gener-
ate the conditional expectation E{xy | Ix}.

(b) An actuator, which multiplies E{zx | It} by
the gain matrix L, and applies the control
input Uk = LkE{CEk | Ik}.

e Generically the estimate 2 of a random vector x
given some information (random vector) I, which
minimizes the mean squared error

E{llz — 2|* | I} = |lz]|® - 2B{z | I} + ||2|°
is EB{z | I} (set to zero the derivative with respect

to & of the above quadratic form).

e The estimator portion of the optimal controller
is optimal for the problem of estimating the state
xk assuming the control is not subject to choice.

e The actuator portion is optimal for the control
problem assuming perfect state information.
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STEADY STATE/IMPLEMENTATION ASPECTS

e As N — oo, the solution of the Riccati equation
converges to a steady state and Ly — L.

o If zo, wi, and vx are Gaussian, E{x, | Ix} is
a linear function of I and is generated by a nice
recursive algorithm, the Kalman filter.

e The Kalman filter involves also a Riccati equa-
tion, so for N — oo, and a stationary system, it
also has a steady-state structure.

e Thus, for Gaussian uncertainty, the solution is
nice and possesses a steady state.

e For nonGaussian uncertainty, computing E{xy | Ix}
maybe very difficult, so a suboptimal solution is
typically used.

e Most common suboptimal controller: Replace
E{zy | I} by the estimate produced by the Kalman
filter (act as if zo, wi, and v, are Gaussian).

e It can be shown that this controller is optimal
within the class of controllers that are linear func-
tions of Ik.
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