6.231 DYNAMIC PROGRAMMING
LECTURE 5
LECTURE OUTLINE

e Stopping problems
e Scheduling problems

e Minimax Control



PURE STOPPING PROBLEMS

e T'wo possible controls:

— Stop (incur a one-time stopping cost, and
move to cost-free and absorbing stop state)

— Continue [using zx+1 = frx(zr, wr) and incur-
ring the cost-per-stage]
e Each policy consists of a partition of the set of
states x; into two regions:
— Stop region, where we stop
— Continue region, where we continue
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EXAMPLE: ASSET SELLING

e A person has an asset, and at k=0,1,..., N —1
receives a random offer wy

e May accept wr and invest the money at fixed
rate of interest r, or reject wx and wait for wgy1.
Must accept the last offer wy_1

e DP algorithm (zx: current offer, T: stop state):

if T
In(zN) = {gN ;f iz iT’

Ji(zy) = {glax[(l )N Fag, B{Jrpr (wr) } i ii 7:&;’

e Optimal policy;

accept the offer x; if zp > ag,
reject the offer xzy if xr < ag,
where
 E{Jrs1(wi) }

T T ) NF



FURTHER ANALYSIS

ACCEPT

REJECT

0 1
e (Can show that ar > axs1 for all k&

e Proof: Let Vk(:ck) = Jk(xk)/(l —I—T)N_k for zx 75
T. Then the DP algorithm is

Vn(zn) = zn, Vi(zr) = max |zx, (14+7)7" 5{Vk+1(w)}

We have oy = Ew{VkH(w)}/(l + r), so it is enough
to show that Vi () > Viy1(x) for all x and k. Start
with Vn_1(x) > Vn(x) and use the monotonicity
property of DP. Q.E.D.

e We can also show that if w is bounded, ar — @
as k — —oo. Suggests that for an infinite horizon
the optimal policy is stationary.
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GENERAL STOPPING PROBLEMS

e At time k, we may stop at cost ¢(xx) or choose
a control uy € U(xy) and continue

In(zn) = t(zN),

Jk(xk):min[t(wk), min E{g(xk,uk,wk)
ukGU(xk)

+ Jr+1 (f(xk, Uk wk)) H

e Optimal to stop at time k for x in the set

Tk:{x

e Since Jy_1(x) < Jn(x), we have Ji(x) < Jx11(x)
for all k, so

t(x) < ug%]i?x) E{g(a;, u, w) + Jg41 (f(33> u, w)) }}

ToC”’CTkCTk_|_1C"'CTN_1.

e Interesting case is when all the T} are equal (to
Tn_1, the set where it is better to stop than to go
one step and stop). Can be shown to be true if

flz,u,w) € Tn_1, for all x € Ty—1, u € U(x), w.



SCHEDULING PROBLEMS

e We have a set of tasks to perform, the ordering
is subject to optimal choice.

e (Costs depend on the order

e There may be stochastic uncertainty, and prece-
dence and resource availability constraints

e Some of the hardest combinatorial problems
are of this type (e.g., traveling salesman, vehicle
routing, etc.)

e Some special problems admit a simple quasi-
analytical solution method
— Optimal policy has an “index form”, i.e.,
each task has an easily calculable “cost in-
dex”, and it is optimal to select the task
that has the minimum value of index (multi-
armed bandit problems - to be discussed later)

— Some problems can be solved by an “inter-
change argument” (start with some schedule,
interchange two adjacent tasks, and see what
happens). They require existence of an op-
timal policy which is open-loop.



EXAMPLE: THE QUIZ PROBLEM

e Given a list of N questions. If question i is an-
swered correctly (given probability p;), we receive
reward R;; if not the quiz terminates. Choose or-
der of questions to maximize expected reward.

e Let ¢ and j be the kth and (k + 1)st questions
in an optimally ordered list

L= (0, iko1,0, 0042, 0inN—1)
E {reward of L} = E{reward of {io,... ix—1}}
+ Pig *+ Piy_ (PiRi + pip; Ry)
+ Dig " -pik_lpiij{reward of {ikt2,... ,iN—l}}

Consider the list with ¢ and j interchanged
L' = (0, yik—1,7,%, k42, .-, iN—1)

Since L is optimal, E{reward of L} > E{reward of L'},
so it follows that p; R; +pip; R; > pjR; + pjp: R; or

piRi/(1 —pi) > p; R; /(1 — pj).



MINIMAX CONTROL

e Consider basic problem with the difference that
the disturbance wy instead of being random, it is
just known to belong to a given set Wy (zy, uk).

e Find policy = that minimizes the cost

J(xp) = max [gN TN
( ) W EWp (1 (Tg)) ( )
k=0,1,...,N—1

N—-1

+ Z Jk (CUk:, tr(Tk), wk;)}

k=0

e The DP algorithm takes the form

JN(zN) = gn(zN),

Jk(azk) = min max [gk(xk,uk,wk)

ukEU(J?k) kaWk(a:k,uk)
+ Jr+1 (fk-(xk, Uk, ’wk))}

(Section 1.6 in the text).



DERIVATION OF MINIMAX DP ALGORITHM

e Similar to the DP algorithm for stochastic prob-
lems. The optimal cost J*(x¢) is

J*(xg) = min--- min max max
10 unN—1 woEW [xo,uo(x0)] wny_1EW[zN_1,uN—1(xN_1)]

N-1
[Z gk (e, k(1) i) + gN(CUN):|

k=0

= min--- min min max cee max
10 uN—2 | pnN—1 woEW [x0,10(x0)] wy_2€EW[rN_o,uN_2(xN_2)

N -2
|:ng($/%7/%(371€>7101€) + max

—y wy_1EW[zn_1,un—_1(xN_1)]

|:9N—1 ($N—17NN—1($N—1)7’LUN—1) + JN(CUN)H }

e Interchange the min over uny_1 and the max over
wo, ..., wnN—2, and similarly continue backwards,
with N — 1 in place of N, etc. After N steps we
obtain J* (CE()) = Jo(CE()).

e Construct optimal policy by minimizing in the
RHS of the DP algorithm.



UNKNOWN-BUT-BOUNDED CONTROL

e For each k, keep the zx of the controlled system

Trk+1 = [k (xk, ur (), wk:)

inside a given set Xy, the target set at time k.

e This is a minimax control problem, where the
cost at stage k is

[0 if:EkGXk,
gr(Tr) = {1 if zp ¢ Xk.

e We must reach at time k the set
X = {azk | Je(xk) = ()}

in order to be able to maintain the state within
the subsequent target sets.

o Start with Xy = Xn, and for k=0,1,...,N—1,

X = {ack € X1 | there exists uy € Uk(xx) such that

fk(xk,uk,wk) c Yk:—i—l, for all WE € Wk(:ck,uk)}
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