
6.231 DYNAMIC PROGRAMMING

LECTURE 5

LECTURE OUTLINE

• Stopping problems

• Scheduling problems

• Minimax Control

1

PURE STOPPING PROBLEMS

• Two possible controls:

− Stop (incur a one-time stopping cost, and
move to cost-free and absorbing stop state)

− Continue [using xk+1 = fk(xk, wk) and incur-
ring the cost-per-stage]

• Each policy consists of a partition of the set of
states xk into two regions:

− Stop region, where we stop

− Continue region, where we continue

STOP
REGION

CONTINUE
REGION

Stop State

2

EXAMPLE: ASSET SELLING

• A person has an asset, and at k = 0, 1, . . . , N −1
receives a random offer wk

• May accept wk and invest the money at fixed
rate of interest r, or reject wk and wait for wk+1.
Must accept the last offer wN−1

• DP algorithm (xk: current offer, T : stop state):

x if x 6= T ,
JN (xN) = N N

0 if xN = T ,
{

max
[

(1 + r)N

{

−kxk, E
{

Jk+1(wk)
}]

if xk =6 T ,Jk(xk) =
0 if xk = T .

• Optimal policy;

accept the offer xk if xk > αk,

reject the offer xk if xk < αk,

where
E +

α =

{

Jk 1(wk)
k

}

(1 + r)N−k
.

3

FURTHER ANALYSIS

0 1 2 N - 1 N k

ACCEPT

REJECT

a 1

a N - 1

a 2

• Can show that αk ≥ αk+1 for all k

• Proof: Let V N−k
k(xk) = Jk(xk)/(1 + r) for xk 6=

T. Then the DP algorithm is

VN (xN) = xN , Vk(xk) = max

[

xk, (1 + r)−1
E
w

{

Vk+1(w)
}

]

We have αk = Ew

{

Vk+1(w) /(1 + r), so it is enough
to show that Vk(x) ≥ Vk+1(x) for all x and k. Start
with VN−1(x) ≥ VN (x) and

}

use the monotonicity
property of DP. Q.E.D.

• We can also show that if w is bounded, αk → a
as k → −∞. Suggests that for an infinite horizon
the optimal policy is stationary.

4

GENERAL STOPPING PROBLEMS

• At time k, we may stop at cost t(xk) or choose
a control uk ∈ U(xk) and continue

JN (xN) = t(xN),

Jk(xk) = min
[

t(xk), min E g(xk, uk, wk)
u ∈U(x)k k

+ Jk+1 f(xk, uk, w

{

k)

• Optimal to stop at t

(

ime k for x in

)}

t

]

he set

Tk =

{

x

∣

∣

∣
t(x) ≤ min E

{

g(x, u, w) + Jk+1

(

f(x, u, w)
u∈U(x)

}

• Since JN−1(x) ≤ J

)}

N (x), we have Jk(x) ≤ Jk+1(x)
for all k, so

T0 ⊂ · · · ⊂ Tk ⊂ Tk+1 ⊂ · · · ⊂ TN−1.

• Interesting case is when all the Tk are equal (to
TN−1, the set where it is better to stop than to go
one step and stop). Can be shown to be true if

f(x, u, w) ∈ TN−1, for all x ∈ TN−1, u ∈ U(x), w.

5

SCHEDULING PROBLEMS

• We have a set of tasks to perform, the ordering
is subject to optimal choice.

• Costs depend on the order

• There may be stochastic uncertainty, and prece-
dence and resource availability constraints

• Some of the hardest combinatorial problems
are of this type (e.g., traveling salesman, vehicle
routing, etc.)

• Some special problems admit a simple quasi-
analytical solution method

− Optimal policy has an “index form”, i.e.,
each task has an easily calculable “cost in-
dex”, and it is optimal to select the task
that has the minimum value of index (multi-
armed bandit problems - to be discussed later)

− Some problems can be solved by an “inter-
change argument”(start with some schedule,
interchange two adjacent tasks, and see what
happens). They require existence of an op-
timal policy which is open-loop.

6

EXAMPLE: THE QUIZ PROBLEM

• Given a list of N questions. If question i is an-
swered correctly (given probability pi), we receive
reward Ri; if not the quiz terminates. Choose or-
der of questions to maximize expected reward.

• Let i and j be the kth and (k + 1)st questions
in an optimally ordered list

L = (i0, . . . , ik−1, i, j, ik+2, . . . , iN−1)

E {reward of L} = E reward of {i0, . . . , ik−1}

+ pi i i0 · · · pi i j jk
(p R

−

{

+ p p R)
1

}

+ pi0 · · · pik pipjE
{

reward of {ik+2, . . . , iN−1}−1

Consider the list with i and j interchanged

}

L′ = (i0, . . . , ik−1, j, i, ik+2, . . . , iN−1)

Since L is optimal, E{reward of L} ≥ E{reward of L′},
so it follows that piRi + pipjRj ≥ pjRj + pjpiRi or

piRi/(1− pi) ≥ pjRj/(1− pj).

7

MINIMAX CONTROL

• Consider basic problem with the difference that
the disturbance wk instead of being random, it is
just known to belong to a given set Wk(xk, uk).

• Find policy π that minimizes the cost

Jπ(x0) = max gN (xN)
w ∈W (x ,µ (x))k k k k k

k=0,1,...,N−1

[

N−1

+
∑

gk
(

xk, µk(xk), wk

k=0

)

]

• The DP algorithm takes the form

JN (xN) = gN (xN),

Jk(xk) = min max gk(xk, uk, wk)
u ∈U(x) w ∈W (x ,u)k k k k k k

+ Jk+1

[

(

fk(xk, uk, wk)

(Section 1.6 in the text).

)]

8

DERIVATION OF MINIMAX DP ALGORITHM

• Similar to the DP algorithm for stochastic prob-
lems. The optimal cost J∗(x0) is

∗J (x0) = min · · · min max · · · max
µ0 µN−1 w0∈W [x0,µ0(x0)] wN−1∈W [xN−1,µN−1(xN−1)]

[

N−1
∑

gk
(

xk, µk(xk), wk

)

+ gN (xN)

k=0

]

= min · · · min

[

min max · · · max
µ0 µN−2 µN−1 w0∈W [x0,µ0(x0)] wN−2∈W [xN−2,µN−2(xN−2)]

[

N−2
∑

gk xk, µk(xk), wk + max
wN−1∈W [xN−1,µN−1(xN−1)]

k=0

()

[

gN−1

(

xN−1, µN−1(xN−1), wN−1 + JN (xN)

]]

• Interchange the min over µ

]

N−1 and the m

)

ax over
w0, . . . , wN−2, and similarly continue backwards,
with N − 1 in place of N , etc. After N steps we
obtain J∗(x0) = J0(x0).

• Construct optimal policy by minimizing in the
RHS of the DP algorithm.

9

UNKNOWN-BUT-BOUNDED CONTROL

• For each k, keep the xk of the controlled system

xk+1 = fk xk, µk(xk), wk

inside a given set Xk,

(

the target set a

)

t time k.

• This is a minimax control problem, where the
cost at stage k is

i
gk(k) =

{

0 f x
x k ∈ Xk,

1 if xk ∈/ Xk.

• We must reach at time k the set

Xk = xk | Jk(xk) = 0

in order to be able

{

to maintain th

}

e state within
the subsequent target sets.

• Start with XN = XN , and for k = 0, 1, . . . , N−1,

Xk =
{

xk ∈ Xk | there exists uk ∈ Uk(xk) such that

fk(xk, uk, wk) ∈ Xk+1, for all wk ∈ Wk(xk, uk)
}

10

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

