6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

e Examples of stochastic DP problems
e Linear-quadratic problems

e Inventory control



LINEAR-QUADRATIC PROBLEMS

e System: xp11 = Arxr + Brur + wg

e (Quadratic cost

N—1
FE {:%VQNSCN + Z (2}, Qr) + %Rkuk)}
N—1

Wi
k=0,1,..., k=0

where QQr > 0 and Ry > 0 [in the positive (semi)definite
sense).

e w; are independent and zero mean

e DP algorithm:
In(zNn) = 2yQNzN,

Ji (k) = min E{ZC%Q]{(L';C + up Rpuy

U
+ Jpt1(Apzr + Brug + wy) }
e Key facts:
— Ji(xk) is quadratic
— Optimal policy {ug, ..., w1} is linear:
pi(@n) = Ly

— Similar treatment of a number of variants
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DERIVATION

e By induction verify that
pi(xr) = Ly, Ji (1) = 27 Kjx), + constant,
where L; are matrices given by

Ly = — (B, Ky+1Br + Ri) "1 B} K41 Ay,

and where K are symmetric positive semidefinite
matrices given by

Ky =Qn,

Ky = A, (Kk+1 — Ky+1Bi(B), Ky11By
+ Ry) 1B, Kj41) Ak + Qp

e This is called the discrete-time Riccati equation

e Just like DP, it starts at the terminal time N
and proceeds backwards.

e Certainty equivalence holds (optimal policy is
the same as when w; is replaced by its expected
value F{wg} = 0).



ASYMPTOTIC BEHAVIOR OF RICCATI EQ.

e Assume stationary system and cost per stage,
and technical assumptions: controlability of (A, B)

and observability of (A, C) where @ = C'C

e The Riccati equation converges limy_, o, Ki =
K, where K is pos. definite, and is the unique
(within the class of pos. semidefinite matrices) so-
lution of the algebraic Riccati equation

K =A(K - KB(B'/KB+ R)-'B'K)A +Q

e The optimal steady-state controller p*(x) = Lx
L=—(B'KB+ R)"1B'KA,

is stable in the sense that the matrix (A + BL) of
the closed-loop system

Tht1 = (A + BL)SCk + W

satisfies limg_, oo (A + BL)* = 0.



GRAPHICAL PROOF FOR SCALAR SYSTEMS

oy

e Riccati equation (with P, = Kny_g):

B2P?
Py = A2 P, — k
s ( " B2Pk+R> e

or Pyy1 = F(Py), where

F(P):A?(P B2 P2 >+Q: A2RP

- B2P L+ R B2P+R+Q

e Note the two steady-state solutions, satistying
P = F(P), of which only one is positive.
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RANDOM SYSTEM MATRICES

e Suppose that {Agp, Bo},...,{ANx—1,Bn_1} are
not known but rather are independent random
matrices that are also independent of the wy

e DP algorithm is
In(zn) = 2yQNTN,
Ji(xr) =min  FE {x;ch:iEk:

U wy,Ag,Bg

+ up Riur, + Ji1 (Apzy, + Brug + wy) |

e Optimal policy uj(zr) = Lrzk, where

—1
Ly = —(Rk + E{B,Ki+1Br}) E{BKi+1Ak},

and where the matrices K are given by
Ky =Qn,
Ky = E{A, Ki11Ar} — E{A} Ky1+1By}
(Ri + E{B,K}11Bi})  E{B,Ki114} + Qs



PROPERTIES

e (Certainty equivalence may not hold

e Riccati equation may not converge to a steady-
state

A
F(P)
/Q
R 0 = P>
E{B 2}

~

e We have Py = F(Py), where

- . E{A2}RP T P2
F(P) = E{B2}P+ R e E{B2}P+ R’

T = E{A2}E{B2} — (E~{A})2(E{B})2



INVENTORY CONTROL

e x: stock, uy: stock purchased, wy: demand
Tht1 = Tk + UL — Wk, k=0,1,...,N —1
e Minimize
N—1
E{Z(cuk + H(xg +uk))}
k=0
where
H(x+u)=F{r(r4+u—w)}

is the expected shortage/holding cost, with r de-
fined e.g., for some p > 0 and h > 0, as

r(x) = pmax(0, —x) + h max(0, )
e DP algorithm:
JN(ZEN) — 0,

Ji(rr) = min [cuk+H(xk+uk)+E{Jk+1($k+Uk—wk)H

ukZO
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OPTIMAL POLICY

e DP algorithm can be written as Jy(xn) = 0,

Ji(xr) = mi>% [Cuk + H(xk + ug) + E{Jk+1(9€k + up — wk:)}]
uk_

= min Gg(xr + ur) — crr = min Gg(y) — cxy,
ukZO yZin

where
Gi(y) = cy + H(y) + E{Jpt1(y — w) }

o If Gy is convex and lim ;o Gr(x) = 00, We

have .
*(x)_{Sk—xk lfa?k<5k;,
Hk k)= 0 lf Il Z Sk,

where S, minimizes G (y).

e This is shown, assuming that H is convex and
¢ < p, by showing that J is convex for all k&, and

lim Jg(x) — oo

|x|— o0



JUSTIFICATION

Graphical inductive proof that Jx is convex.

A
cy + H(y)
) H(y)
1
T~ <
55\ I ~~~
| ! _
S s
oy N-1 y
JN—l(XN-l)A
I ~~~~~~
55\5 I =
Sy ! _
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