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Additional topics in ADP

Stochastic shortest path problems

Average cost problems

Generalizations

Basis function adaptation

Gradient-based approximation in policy space

An overview



REVIEW: PROJECTED BELLMAN EQUATION

e Policy Evaluation: Bellman’s equation J =1'J
is approximated the projected equation

Or = 11T (Pr)

which can be solved by a simulation-based meth-
ods, e.g., LSPE(\), LSTD()A), or TD(A). Aggre-
gation is another approach - simpler in some ways.

T(®r)

i
. Projection
! on S

]

dr = I1T(Dr)

0]

S: Subspace spanned by basis functions

Indirect method: Solving a projected
form of Bellman’s equation

e These ideas apply to other (linear) Bellman
equations, e.g., for SSP and average cost.

e I[mportant Issue: Construct simulation frame-
work where IIT [or IIT(M] is a contraction.



STOCHASTIC SHORTEST PATHS

e Introduce approximation subspace
S={dr|re Rs}

and for a given proper policy, Bellman’s equation
and its projected version

J=TJ =g+ PJ, Gr = 1T (Pr)
Also its \-version

Or = IITXN) (D), T = (1—\) Z ATt
t=0

e Question: What should be the norm of projec-
tion” How to implement it by simulation?

e Speculation based on discounted case: It should
be a weighted FEuclidean norm with weight vector
£ = (&1,...,&), where & should be some type of
long-term occupancy probability of state ¢ (which
can be generated by simulation).

e But what does “long-term occupancy probabil-
ity of a state” mean in the SSP context?

e How do we generate infinite length trajectories
given that termination occurs with prob. 17



SIMULATION FOR SSP

e We envision simulation of trajectories up to
termination, followed by restart at state ¢ with
some fixed probabilities go(z) > 0.

e Then the “long-term occupancy probability of
a state” of ¢ is proportional to

(i) =) @), i=1,...,n,
t=0

where
gt (i) = P(ir = 1), i=1,....n, t=0,1,...

e We use the projection norm

Ml =y >4 ()’

[Note that 0 < ¢(i) < oo, but ¢ is not a prob.
distribution.]

e We can show that II7T(M) is a contraction with
respect to || - ||, (see the next slide).

e LSTD()), LSPE()M), and TD(\) are possible.
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CONTRACTION PROPERTY FOR SSP

e We have ¢ = .~ q: so

(®.@) (®.@)
¢P=> qP=) q=q —q
t=0 t=1

Zq(i)pz‘j =q(j) —qo(4), Vi

e To verify that IIT is a contraction, we show
that there exists 5 < 1 such that ||Pz||2 < B]z||3
for all z € k™.

e For all z € R, we have

IPalE =3 _a) | Sopuss | <3003 pa]
—Z Zq i = _(a0) — 0(7)7

= HZHq — 12113, < Bll=lI3
where

8 =1— min qo0(J)
i q(j) ;




AVERAGE COST PROBLEMS

e C(onsider a single policy to be evaluated, with
single recurrent class, no transient states, and steady-
state probability vector & = (&1,...,&n).

e The average cost, denoted by 7, is

N—-1
1
1= dm G B senenn) =i v
k=0

e Bellman’s equation is J = F'J with
FJ=qg—ne+ PJ

where e is the unit vector e = (1,...,1).

e The projected equation and its A-version are

Or = I1F(Pr), Or = ITFN) (Pr)

e A problem here is that F' is not a contraction
with respect to any norm (since e = Pe).

e IIF(N) is a contraction w. r. to || - ||¢ assuming
that e does not belong to S and A > 0 (the case
A = 0 is exceptional, but can be handled); see the
text. LSTD(A), LSPE(A), and TD(\) are possible.
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GENERALIZATION /UNIFICATION

e Consider approx. solution of z = T'(z), where
T(x) = Az + b, Aisnxn, beRn

by solving the projected equation y = IIT(y),
where II is projection on a subspace of basis func-
tions (with respect to some Fuclidean norm).

e We can generalize from DP to the case where
A is arbitrary, subject only to

I —IIA : invertible

Also can deal with case where I — I1A is (nearly)
singular (iterative methods, see the text).
e DBenefits of generalization:

— Unification /higher perspective for projected
equation (and aggregation) methods in ap-
proximate DP

— An extension to a broad new area of appli-
cations, based on an approx. DP perspective
e Challenge: Dealing with less structure
— Lack of contraction

— Absence of a Markov chain ,



GENERALIZED PROJECTED EQUATION

e Let Il be projection with respect to

n
1=1

where £ € R is a probability distribution with
positive components.

e If r* is the solution of the projected equation,
we have ®r* = I[I(APr* + b) or

n n

* — 3 ) Y \/ o .. Y\ ek _ h.
r argqyggg;& A(i)'r ;aw@)r bi

where ¢(i)’ denotes the ith row of the matrix ®.

e Optimality condition/equivalent form:

/
n

>_&o(0) | 0() = 3 aé() | =) &s(0)b

j=1

e The two expected values can be approximated
by simulation 5



SIMULATION MECHANISM

>

Row Sampling According to &

Column Sampling
According to P

e Row sampling: Generate sequence {ig,i1,...}
according to &, i.e., relative frequency of each row
1 18 57,
e Column sampling: Generate {(io, jo), (i1, 71), - - }
according to some transition probability matrix P
with

pij >0 if ;g # 0,

i.e., for each 7, the relative frequency of (i, j) is pi;
(connection to importance sampling)

e Row sampling may be done using a Markov
chain with transition matrix @) (unrelated to P)

e Row sampling may also be done without a
Markov chain - just sample rows according to some
known distribution & (e.g., a uniform)



ROW AND COLUMN SAMPLING

>

Row Sampling According to &
(May Use Markov Chain Q)

| Column Sampling
I(lAccording to >
Markov Chain

P e |4

e Row sampling ~ State Sequence Generation in
DP. Affects:

— The projection norm.
— Whether IIA is a contraction.

e Column sampling ~ Transition Sequence Gen-
eration in DP.

— Can be totally unrelated to row sampling.
Affects the sampling/simulation error.

— “Matching” P with |A]| is beneficial (has an
effect like in importance sampling).

e Independent row and column sampling allows
exploration at will! Resolves the exploration prob-
lem that is critical in approximate policy iteration.
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LSTD-LIKE METHOD

e Optimality condition/equivalent form of pro-
jected equation

_Zw(z') qb(z‘)—Zaz-jqﬁ(j) r*zzgiqﬁ(z)b

e The two expected values are approximated by
row and column sampling (batch 0 — ).

e We solve the linear equation

I§¢(ik) (¢(ik) ZW% ) Z¢ (k) biy

LIk

e We have ry — r*, regardless of IIA bemg a con-
traction (by law of large numbers; see next slide).

e [ssues of singularity or near-singularity of /—II.A
may be important; see the text.

e An LSPE-like method is also possible, but re-
quires that IIA is a contraction.

e Under the assumption » 7, [a;;| < 1 for all 4,
there are conditions that guarantee contraction of
IIA; see the text.
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JUSTIFICATION W/ LAW OF LARGE NUMBERS

e We will match terms in the exact optimality
condition and the simulation-based version.

o Let éf be the relative frequency of ¢ in row
sampling up to time t.

e We have

s DT Bi6) = D EBWl) = 3 E0)ol)
k=0 i=1 =1

Hil Z ¢(ir)biy, = Zéfﬁb(z)bz R Z§i¢(l)b
1=1 i=1

o Let pi; be the relative frequency of (i,j) in
column sampling up to time ¢.
t
1 Qi gy . -\,
— ) ¢(ir)9(Jk)

t+1 k_Opikjk

_ S‘ gt pr aﬁ )/
6> ayoli)el)
i=1 =1




BASIS FUNCTION ADAPTATION I

e¢ An important issue in ADP is how to select
basis functions.

e A possible approach is to introduce basis func-
tions parametrized by a vector €, and optimize
over 6, i.e., solve a problem of the form

min F(J(9))
where J(6) approximates a cost vector J on the
subspace spanned by the basis functions.

e One example is

F(J(0) = 3" 176) - JO))
icl
where I is a subset of states, and J(z), ¢ € I, are
the costs of the policy at these states calculated

directly by simulation.

e Another example is

2

Y

F(J(9)) = ||7(0) = T(J (9))]

where J(6) is the solution of a projected equation.
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BASIS FUNCTION ADAPTATION II

e Some optimization algorithm may be used to
minimize F(.J(6)) over 6.

e A challenge here is that the algorithm should
use low-dimensional calculations.

e One possibility is to use a form of random search
(the cross-entropy method); see the paper by Men-
ache, Mannor, and Shimkin (Annals of Oper. Res.,
Vol. 134, 2005)

e Another possibility is to use a gradient method.
For this it is necessary to estimate the partial
derivatives of J(6#) with respect to the components

of 6.

e It turns out that by differentiating the pro-
jected equation, these partial derivatives can be
calculated using low-dimensional operations. See
the references in the text.



APPROXIMATION IN POLICY SPACE 1

e C(Consider an average cost problem, where the
problem data are parametrized by a vector r, i.e.,
a cost vector g(r), transition probability matrix
P(r). Let n(r) be the (scalar) average cost per
stage, satistfying Bellman’s equation

n(r)e+ h(r) = g(r) + P(r)h(r)

where h(r) is the differential cost vector.
e Consider minimizing n(r) over r. Other than

random search, we can try to solve the problem
by a policy gradient method:

re+1 = Tk — Ve VN(rk)

e Approximate calculation of Vn(ry): If An, Ag,
AP are the changes in 7, g, P due to a small change
Ar from a given r, we have

An = ¢ (Ag+ APh),

where ¢ is the steady-state probability distribu-
tion /vector corresponding to P(r), and all the quan-
tities above are evaluated at r.



APPROXIMATION IN POLICY SPACE 11

e Proof of the gradient formula: We have, by “dif-
ferentiating” Bellman’s equation,

An(r)-e+Ah(r) = Ag(r)+AP(r)h(r)+P(r)Ah(r)
By left-multiplying with &/,
¢ An(r)-e+& Ah(r) = & (Ag(r)+AP(r)h(r)) +&'P(r) Ah(r)

Since £’An(r) - e = An(r) and & = &' P(r), this
equation simplifies to

An = ¢(Ag + APh)

e Since we don’t know &, we cannot implement a
gradient-like method for minimizing n(r). An al-
ternative is to use “sampled gradients”, i.e., gener-
ate a simulation trajectory (io,%1,...), and change
r once in a while, in the direction of a simulation-

based estimate of £/(Ag + APh).

e Important Fact: An can be viewed as an ex-
pected value!

e Much research on this subject, see the text.



6.231 DYNAMIC PROGRAMMING

OVERVIEW-EPILOGUE

e Finite horizon problems
— Deterministic vs Stochastic

— Perfect vs Imperfect State Info

e Infinite horizon problems
— Stochastic shortest path problems
— Discounted problems

— Average cost problems



FINITE HORIZON PROBLEMS - ANALYSIS

e Perfect state info

— A general formulation - Basic problem, DP
algorithm

— A few nice problems admit analytical solu-
tion
e Imperfect state info

— Reduction to perfect state info - Sufficient
statistics

— Very few nice problems admit analytical so-
lution

— Finite-state problems admit reformulation as
perfect state info problems whose states are
prob. distributions (the belief vectors)



FINITE HORIZON PROBS - EXACT COMP. SOL.

e Deterministic finite-state problems
— Equivalent to shortest path
— A wealth of fast algorithms
— Hard combinatorial problems are a special
case (but # of states grows exponentially)
e Stochastic perfect state info problems
— The DP algorithm is the only choice

— Curse of dimensionality is big bottleneck

e Imperfect state info problems
— Forget it!

— Only small examples admit an exact compu-
tational solution



FINITE HORIZON PROBS - APPROX. SOL.

e Many techniques (and combinations thereof) to
choose from
e Simplification approaches

— Certainty equivalence

— Problem simplification

— Rolling horizon

— Aggregation - Coarse grid discretization

e Limited lookahead combined with:
— Rollout
— MPC (an important special case)

— Feature-based cost function approximation

e Approximation in policy space
— Gradient methods

— Random search
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INFINITE HORIZON PROBLEMS - ANALYSIS

e A more extensive theory

e Bellman’s equation

e Optimality conditions

e Contraction mappings

e A few nice problems admit analytical solution

e Idiosynchracies of problems with no underlying
contraction

e Idiosynchracies of average cost problems

e Llegant analysis
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INF.

HORIZON PROBS - EXACT COMP. SOL.

Value iteration

— Variations (Gauss-Seidel, asynchronous, etc)

Policy iteration

— Variations (asynchronous, based on value it-
eration, optimistic, etc)

Linear programming
Elegant algorithmic analysis

Curse of dimensionality is major bottleneck
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INFINITE HORIZON PROBS - ADP

e Approximation in value space (over a subspace
of basis functions)

e Approximate policy evaluation
— Direct methods (fitted VI)

— Indirect methods (projected equation meth-
ods, complex implementation issues)

— Aggregation methods (simpler implementa-
tion/many basis functions tradeoft)
e (Q-Learning (model-free, simulation-based)
— Exact Q-factor computation
— Approximate Q-factor computation (fitted VI)
— Aggregation-based Q-learning
— Projected equation methods for opt. stop-
pmg
e Approximate LP
e Rollout
e Approximation in policy space
— Gradient methods
— Random search
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