6.231 DYNAMIC PROGRAMMING
LECTURE 22
LECTURE OUTLINE

Aggregation as an approximation methodology
Aggregate problem

Examples of aggregation

Simulation-based aggregation

(Q-Learning

PROBLEM APPROXIMATION - AGGREGATION

e Another major idea in ADP is to approximate
the cost-to-go function of the problem with the
cost-to-go function of a simpler problem. The sim-
plification is often ad-hoc/problem dependent.

e Aggregation is a systematic approach for prob-
lem approximation. Main elements:

— Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

— Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

— Solve (exactly or approximately) the “ag-
gregate” problem by any kind of value or pol-

icy iteration method (including simulation-
based methods)

— Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

e Hard aggregation example: Aggregate states
are subsets of original system states, treated as if
they all have the same cost.

AGGREGATION/DISAGGREGATION PROBS

e The aggregate system transition probabilities
are defined via two (somewhat arbitrary) choices

Original
System States

() >

Dij (u)a g(za ’LL,_])

Aggregation
Probabilities

Disaggregation
Probabilities

e For each original system state 5 and aggregate
state y, the aggregation probability ¢,

— The “degree of membership of j in the ag-
gregate state y.”

— In hard aggregation, ¢;, = 1 if state j be-
longs to aggregate state/subset .
e For each aggregate state x and original system
state 7, the disaggregation probability dg;
— The “degree of ¢ being representative of x.”

— In hard aggregation, one possibility is all
states ¢ that belongs to aggregate state/subset
x have equal dg;. 3

AGGREGATE PROBLEM

e The transition probability from aggregate state
xr to aggregate state y under control u

Day(u) = Z dei Y pij(u)djy, or P(u) = DP(u)®

where the rows of D and ® are the disaggr. and
aggr. probs.

e The aggregate expected transition cost is

n n

g, u) = dei Y pij(w)g(i,u,j), or§=DPg

i=1 j=1

e The optimal cost tunction of the aggregate prob-
lem, denoted R, is

A

R(z) =min |g(z,u) + « Zﬁxy(u)}?(y) : YV x

ueclU
or R = min, g + &f’R] - Bellman’s equation for
the aggregate problem.

e The optimal cost J* of the original problem is
approximated using interpolation, J* =~ J = ®R:

J(G) =) ¢ Ry), VYV

EXAMPLE I: HARD AGGREGATION

e Group the original system states into subsets,
and view each subset as an aggregate state

e Aggregation probs: ¢j, = 1 if j belongs to
aggregate state y.

1 00 0
1 2 3 1 0 0 O
° ° ° 01 0 0
1 2 1 00 0
ok e of =110 0 0
| 01 0 0
.7 963.8 564.9 O 0 1 O
00 1 0

00 0 1/

e Disaggregation probs: There are many possi-
bilities, e.g., all states ¢ within aggregate state x
have equal prob. d.;.

e If optimal cost vector J* is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

e Soft aggregation (provides “soft boundaries”
between aggregate states).

5

EXAMPLE II: FEATURE-BASED AGGREGATION

e If we know good features, it makes sense to
group together states that have “similar features”

e LEissentially discretize the features and assign a
weight to each discretization point

@ Extraction T
P ° ° ™
[] [] [

States Features Aggregate States

e A general approach for passing from a feature-
based state representation to an aggregation-based
architecture

e Hard aggregation architecture based on features
is more powerful (nonlinear/piecewise constant in
the features, rather than linear)

e ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture

EXAMPLE III: REP. STATES/COARSE GRID

e Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state. Then “interpolate”

Original State Space
/

| Yo

° h
\j<y3
I S
—
J3 \

Representative/Aggregate States

e Disaggregation probs. are d;; = 1 if ¢ is equal
to representative state .

e Aggregation probs. associate original system
states with convex combinations of rep. states

g~ Z¢jyy

yeA

e Well-suited for Euclidean space discretization

e Extends nicely to continuous state space, in-
cluding belief space of POMDP

7

EXAMPLE IV: REPRESENTATIVE FEATURES

e Choose a collection of “representative” subsets
of original system states, and associate each one
of them with an aggregate state

Original State Space
|

|
Swl ¢j:{:1] Sm2
Pjas
Dij
¢j:173 ‘

Q.9

(X

|

Aggregate States/Subsets

e (Common case: S, is a group of states with
“similar features”

e Hard aggregation is special case: Uy S, = {1,...,n}

e Aggregation with representative states is special
case: S, consists of just one state

e With rep. features, aggregation approach is a
special case of projected equation approach with
“seminorm” projection. So the T'D methods and
multistage Bellman Eq. methodology apply

8

APPROXIMATE PI BY AGGREGATION

Original
System States

O, - O,

Disaggregation Aggregation
Probabilities Probabilities
i * * Piy

9(z,u) = Z deri sz‘j(u)g(’i,u,j)
e Consider approximate PI for the original prob-
lem, with evaluation done using the aggregate prob-
lem (other possibilities exist - see the text)

e LEvaluation of policy u: J = ®R, where R =
DT, (®PR) (R is the vector of costs of aggregate
states corresponding to u). May use simulation.

e Similar form to the projected equation ®R =
II7T,(PR) (PD in place of II).

e Advantages: It has no problem with exploration
or with oscillations.

e Disadvantage: The rows of D and & must be
probability distributions. 0

Q-LEARNING 1

e (J)-learning has two motivations:
— Dealing with multiple policies simultaneously

— Using a model-free approach [no need to know
pi;j(u), only be able to simulate them]

e The ()-factors are defined by

Q*(4,u) = sz‘j(u) (9(i,u,) +aJ*(j)), ¥ (i,u)

e Since J* = T'J*, we have J*(i) = min,cy(;) Q* (4, u)
so the () factors solve the equation

n
Q- (ivu) = Y pis(w) (96iud) +a_min Q))
pt u/ €U (j)
e (Q*(i,u) can be shown to be the unique solu-
tion of this equation. Reason: This is Bellman’s
equation for a system whose states are the original
states 1,...,n, together with all the pairs (i, u).

e Value iteration: For all (7, u)
Qlivw) = Y- pisw) (s ues) +a_pin. Qi))
j=1

uw' eU(j)

10

Q-LEARNING 11

e Use some randomization to generate sequence
of pairs (ix, ux) |all pairs (i, u) are chosen infinitely
often|. For each k, select ji according to p;, j(ux).

e ()-learning algorithm: updates Q (i, ux) by

Q ik, uk) := (1 — vk (ig, ur)) Q ik, uk)

+%(73k,uk) g(Zkauk Jk)JrOé min Q(]kau/)
u' €U (jg)

e Stepsize Vi (ix, ur) must converge to 0 at proper
rate (e.g., like 1/k).

e [Important mathematical point: In the QQ-factor
version of Bellman’s equation the order of expec-
tation and minimization is reversed relative to the
ordinary cost version of Bellman’s equation:

J — mlﬂ szj 7' U,])‘FO&J*(]))

e ()-learning can be shown to converge to true/exact
QQ-factors (sophisticated stoch. approximation proof).

e Major drawback: Large number of pairs (¢,u) -
no function approximation is used.

Q-FACTOR APPROXIMATIONS

e Basis function approximation for ()-factors:

~

Qi,u,r) = (i, u)r

e We can use approximate policy iteration and
LSPE/LSTD/TD for policy evaluation (exploration
issue is acute).

e Optimistic policy iteration methods are fre-
quently used on a heuristic basis.

e Example (very optimistic). At iteration k, given
ri and state/control (i, ug):

(1) Simulate next transition (ig,ix41) using the
transition probabilities p;, j(ug).

(2) Generate control ugq from

Ug+1 = arg min Q(igy1,u, k)
uweU (ig41)

(3) Update the parameter vector via

rr+1 = rx — (LSPE or TD-like correction)

e Unclear validity. Solid basis for aggregation
case, and for case of optimal stopping (see text).

12

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

