
6.231 DYNAMIC PROGRAMMING

LECTURE 22

LECTURE OUTLINE

• Aggregation as an approximation methodology

• Aggregate problem

• Examples of aggregation

• Simulation-based aggregation

• Q-Learning

1



PROBLEM APPROXIMATION - AGGREGATION

• Another major idea in ADP is to approximate
the cost-to-go function of the problem with the
cost-to-go function of a simpler problem. The sim-
plification is often ad-hoc/problem dependent.

• Aggregation is a systematic approach for prob-
lem approximation. Main elements:

− Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

− Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of value or pol-
icy iteration method (including simulation-
based methods)

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

• Hard aggregation example: Aggregate states
are subsets of original system states, treated as if
they all have the same cost.

2



AGGREGATION/DISAGGREGATION PROBS

• The aggregate system transition probabilities
are defined via two (somewhat arbitrary) choices

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• For each original system state j and aggregate
state y, the aggregation probability φjy

− The “degree of membership of j in the ag-
gregate state y.”

− In hard aggregation, φjy = 1 if state j be-
longs to aggregate state/subset y.

• For each aggregate state x and original system
state i, the disaggregation probability dxi

− The “degree of i being representative of x.”

− In hard aggregation, one possibility is all
states i that belongs to aggregate state/subset
x have equal dxi. 3



AGGREGATE PROBLEM

• The transition probability from aggregate state
x to aggregate state y under control u

n n
∑

ˆp̂xy(u) =
∑

dxi pij(u)φjy, or P (u) = DP (u)Φ
i=1 j=1

where the rows of D and Φ are the disaggr. and
aggr. probs.

• The aggregate expected transition cost is

n n

ĝ(x, u) =
∑

dxi
∑

pij(u)g(i, u, j), or ĝ = DPg
i=1 j=1

• The optimal cost function of the aggregate prob-
ˆlem, denoted R, is

ˆ ˆR(x) = min

[

ĝ(x, u) + α
∑

p̂xy(u)R(y) ,
u∈U

y

]

∀ x

ˆ ˆ ˆor R = minu[ĝ + αPR] - Bellman’s equation for
the aggregate problem.

• The optimal cost J∗ of the original problem is
˜ ˆapproximated using interpolation, J∗ ≈ J = ΦR:

J̃(j) =
∑

ˆφjyR(y),
y

∀ j
4



EXAMPLE I: HARD AGGREGATION

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs: φjy = 1 if j belongs to
aggregate state y.

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

Φ =



























1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1



























• Disaggregation probs: There are many possi-
bilities, e.g., all states i within aggregate state x
have equal prob. dxi.

• If optimal cost vector J∗ is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

• Soft aggregation (provides “soft boundaries”
between aggregate states).

5



EXAMPLE II: FEATURE-BASED AGGREGATION

• If we know good features, it makes sense to
group together states that have “similar features”

• Essentially discretize the features and assign a
weight to each discretization point

Special States Aggregate States Features
)

Special States Aggregate States FeaturesSpecial States Aggregate States Features

Feature Extraction Mapping Feature Vector
Feature Extraction Mapping Feature Vector

• A general approach for passing from a feature-
based state representation to an aggregation-based
architecture

• Hard aggregation architecture based on features
is more powerful (nonlinear/piecewise constant in
the features, rather than linear)

• ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture

6



EXAMPLE III: REP. STATES/COARSE GRID

• Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state. Then “interpolate”

x j

x j1 j2

j2 j3

x j1

j3 y1 1 y2

2 y3

y3 Original State Space

Representative/Aggregate States

• Disaggregation probs. are dxi = 1 if i is equal
to representative state x.

• Aggregation probs. associate original system
states with convex combinations of rep. states

j ∼
y

∑

φjyy
∈A

• Well-suited for Euclidean space discretization

• Extends nicely to continuous state space, in-
cluding belief space of POMDP

7



EXAMPLE IV: REPRESENTATIVE FEATURES

• Choose a collection of “representative” subsets
of original system states, and associate each one
of them with an aggregate state

y3 Original State Space

Aggregate States/Subsets
0 1 2 49

Sx1

Small cost

Sx2

Small cost

Sx3

ij j

ij j

Aggregate States/Subsets
0 1 2 49 i

pij

φ

pij

φ

φjx1

φjx2

φjx3

• Common case: Sx is a group of states with
“similar features”

• Hard aggregation is special case: ∪xSx = {1, . . . , n}
• Aggregation with representative states is special
case: Sx consists of just one state

• With rep. features, aggregation approach is a
special case of projected equation approach with
“seminorm” projection. So the TD methods and
multistage Bellman Eq. methodology apply

8



APPROXIMATE PI BY AGGREGATION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =
n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• Consider approximate PI for the original prob-
lem, with evaluation done using the aggregate prob-
lem (other possibilities exist - see the text)

• ˜Evaluation of policy µ: J = ΦR, where R =
DTµ(ΦR) (R is the vector of costs of aggregate
states corresponding to µ). May use simulation.

• Similar form to the projected equation ΦR =
ΠTµ(ΦR) (ΦD in place of Π).

• Advantages: It has no problem with exploration
or with oscillations.

• Disadvantage: The rows of D and Φ must be
probability distributions. 9



Q-LEARNING I

• Q-learning has two motivations:

− Dealing with multiple policies simultaneously

− Using a model-free approach [no need to know
pij(u), only be able to simulate them]

• The Q-factors are defined by

n

Q∗(i, u) =
∑

pij(u)
(

g(i, u, j) +αJ∗(j)
)

, ∀ (i, u)
j=1

• Since J∗ = TJ∗, we have J∗(i) = min ∗
u∈U(i) Q (i, u)

so the Q factors solve the equation

n

Q∗(i, u) =
∑

p (u)

(

g(i, u, j) + α min Q∗ ′
ij (j, u )

u′∈U(j)
j=1

)

• Q∗(i, u) can be shown to be the unique solu-
tion of this equation. Reason: This is Bellman’s
equation for a system whose states are the original
states 1, . . . , n, together with all the pairs (i, u).

• Value iteration: For all (i, u)
n

Q(i, u) :=
∑

p ′
ij(u) g(i, u, j) + α min Q(j, u )

u′∈U(j)
j=1

( )

10



Q-LEARNING II

• Use some randomization to generate sequence
of pairs (ik, uk) [all pairs (i, u) are chosen infinitely
often]. For each k, select jk according to pikj(uk).

• Q-learning algorithm: updates Q(ik, uk) by

Q(ik, uk) := 1− γk(ik, uk) Q(ik, uk)

+ γk(ik, uk

(

)

)

(

g(ik, uk, jk) + α min Q(jk, u′)
u′∈U(jk)

)

• Stepsize γk(ik, uk) must converge to 0 at proper
rate (e.g., like 1/k).

• Important mathematical point: In the Q-factor
version of Bellman’s equation the order of expec-
tation and minimization is reversed relative to the
ordinary cost version of Bellman’s equation:

n

J∗(i) = min
∑

pij(u)
(

g(i, u, j) + αJ∗(j)
u∈U(i)

j=1

)

• Q-learning can be shown to converge to true/exact
Q-factors (sophisticated stoch. approximation proof).

• Major drawback: Large number of pairs (i, u) -
no function approximation is used.

11



Q-FACTOR APPROXIMATIONS

• Basis function approximation for Q-factors:

Q̃(i, u, r) = φ(i, u)′r

• We can use approximate policy iteration and
LSPE/LSTD/TD for policy evaluation (exploration
issue is acute).

• Optimistic policy iteration methods are fre-
quently used on a heuristic basis.

• Example (very optimistic). At iteration k, given
rk and state/control (ik, uk):

(1) Simulate next transition (ik, ik+1) using the
transition probabilities pikj(uk).

(2) Generate control uk+1 from

˜uk+1 = arg min Q(ik+1, u, rk)
u∈U(ik+1)

(3) Update the parameter vector via

rk+1 = rk − (LSPE or TD-like correction)

• Unclear validity. Solid basis for aggregation
case, and for case of optimal stopping (see text).

12



MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



