6.231 DYNAMIC PROGRAMMING
LECTURE 21

LECTURE OUTLINE

e Review of approximate policy iteration

e Projected equation methods for policy evalua-
tion

e Issues related to simulation-based implementa-
tion

e Multistep projected equation methods
e DBias-variance tradeoff
e Exploration-enhanced implementations

e (scillations



REVIEW: PROJECTED BELLMAN EQUATION

e For a fixed policy u to be evaluated, consider
the corresponding mapping 1

or more compactly, T'J = g + aPJ

e Approximate Bellman’s equation J = T'J by
¢r = IIT(Pr) or the matrix form/orthogonality
condition C'r* = d, where

C=®=(—aP)®, d=d=yg.

: Projection
onS

dr = I1T(Pr)

0
S: Subspace spanned by basis functions

Indirect method: Solving a projected
form of Bellman’s equation



PROJECTED EQUATION METHODS

o Matrix inversion: r* = C—1d

e Iterative Projected Value Iteration (PVI) method:

(I)’I“]H_l = HT((I)’I“k) = H(g -+ OéP(I)’I“k)

Converges to r* if II'T" is a contraction. True if 11 is
projection w.r.t. steady-state distribution norm.

e Simulation-Based Implementations: (Generate
k+1 simulated transitions sequence {ig, 1, . .., ix }
and approximations C ~ C' and di ~ d:

k
Cr= > 6060 (80 —asien)) ~ ¥'E(I-aP)

k
A = ——= Y 6(ir)g(it,ir+1) ~ /=g

o LSTD: 7 = C, 'dy
o LSPE: k41 =Tk — Gk(Cka — dk) where
Gp~ G = (PED)-!

Converges to r* if II'I' is contraction.



ISSUES FOR PROJECTED EQUATIONS

e Implementation of simulation-based solution of
projected equation ®r ~ J,,, where Cyr = dj and

Ck ~ (I)’E([ — OzP)(I), dk ~ (I)’Eg

e [Low-dimensional linear algebra needed for the
simulation-based approximations Cj and dj (of
order s; the number of basis functions).

e Very large number of samples needed to solve
reliably nearly singular projected equations.

e Special methods for nearly singular equations
by simulation exist; see Section 7.3 of the text.

e Optimistic (few sample) methods are more vul-
nerable to simulation error

e Norm mismatch/sampling distribution issue

e The problem of bias: Projected equation solu-
tion # II.J,,, the “closest” approximation of J,

e Everything said so far relates to policy evalua-
tion. How about the effect of approximations on
policy improvement?

o We will next address some of these issues



MULTISTEP METHODS

e Introduce a multistep version of Bellman’s equa-
tion J = TN J, where for A € [0, 1),
T = (1—\) Z NTEA+1
(=0
Geometrically weighted sum of powers of T

e 7' is a contraction with mod. «of, w. r. to
weighted Euclidean norm || - ||¢, where & is the
steady-state probability vector of the Markov chain.

e Hence T is a contraction with modulus

A
= Z af TN = 1(_ &)\)

Note vy, — 0 as A — 1 - affects norm mismatch

e 7% and TN have the same fixed point J,, and

| = @r3lle <

| Ty =TT

1
\/1—04/\

where @73 is the fixed point of IIT'(M).
e ®ry depends on A.



BIAS-VARIANCE TRADEOFF

Solution of projected equation
Or = 11T (Pr)

Simulation error

Bias

Subspace S = {®r | r € R}

e From ||J, — ®ryulle < —2—||Jp — IJ,]|¢
K A /1—04%\
error bound

e As AT 1, we have a | 0, so error bound (and
quality of approximation) improves:

lgrll Ory , = 11J,

e DBut the simulation noise in approximating
oo
T = (1 —)\) Z N1
£=0
Increases

e Choice of A is usually based on trial and error



MULTISTEP PROJECTED EQ. METHODS

e The multistep projected Bellman equation is
Or = IITN) (dr)

e In matrix form: CMyr = dN) | where
CH =@ E(I —aPM)®,  dN =d'=gW),
with

P =(1-)\) ZO&E)\EPE‘H, gN) = Z at\EPtg
£=0 £=0

e The LSTD(A) method is (Cl(c/\))_ld,(;\), where

C,Ef‘) and d,g‘) are simulation-based approximations

of CN) and d).
e The LSPE()) method is

Tk+1 = Tk — VG (C]iA)Tk — d;(j))

where G, is a simulation-based approx. to (®/=d) 1

e TD()): An important simpler/slower iteration
[similar to LSPE(\) with Gy = I - see the text].



MORE ON MULTISTEP METHODS

e The simulation process to obtain C,S‘) and d,(j‘)
is similar to the case A = 0 (single simulation tra-

jectory ig, i1, ..., more complex formulas)
! k k
A . ) ) /
C,i = ] Z¢(Zt) Z am=IAM = (i) = (im+1))
t=0 m=t

k k
()‘) — 1 ) m—t)\m—t )
dy, E 1 ; (it) mZ:tO‘ Yim

e In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

e Many different versions (see the text).

e Note the )\-tradeoffs:

A A : :
— As A1 1, C,g ) and d,i ) contain more “sim-
ulation noise”, so more samples are needed
for a close approximation of 7y ,

— The error bound ||.J,—®7» || becomes smaller

— As A 1 1, IITN becomes a contraction for
arbitrary projection norm



APPROXIMATE PI ISSUES - EXPLORATION

e 1st major issue: exploration. Common remedy
is the off-policy approach: Replace P of current
policy with

P = (I - B)P + BQ,

where B is a diagonal matrix with 5; € [0, 1] on
the diagonal, and () is another transition matrix.

e Then LSTD and LSPE formulas must be modi-
fied ... otherwise the policy associated with P (not
P) is evaluated (see the textbook, Section 6.4).

e Alternatives: Geometric and free-form sampling

e Both of these use multiple short simulated tra-
jectories, with random restart state, chosen to en-
hance exploration (see the text)

e (Geometric sampling uses trajectories with geo-
metrically distributed number of transitions with
parameter A € [0,1). It implements LSTD(A) and
LSPE()) with exploration.

e Free-form sampling uses trajectories with more
generally distributed number of transitions. It im-
plements method for approximation of the solu-
tion of a generalized multistep Bellman equation.



APPROXIMATE PI ISSUES - OSCILLATIONS

e Define for each policy u
R, ={r|T,(®r)="T(Pr)}

e These sets form the greedy partition of the pa-
rameter r-space

R, = {7“ | Ty, (Pr) = T((I)T)}

For a policy p, R, is the set of all r such that
policy improvement based on ®r produces u

e Oscillations of nonoptimistic approx.: r, is gen-
erated by an evaluation method so that ®r, ~ J,

R'uk—‘,—l

10



MORE ON OSCILLATIONS/CHATTERING

e For optimistic PI a different picture holds

e Oscillations are less violent, but the “limit”
point is meaningless!

e Fundamentally, oscillations are due to the lack
of monotonicity of the projection operator, i.e.,

J < J’" does not imply I1J < II1J’.

e If approximate PI uses policy evaluation

¢r = (WT,)(Pr)

with W a monotone operator, the generated poli-
cies converge (to an approximately optimal limit).

e The operator W used in the aggregation ap-
proach has this monotonicity property.

1"
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