
6.231 DYNAMIC PROGRAMMING

LECTURE 21

LECTURE OUTLINE

• Review of approximate policy iteration

• Projected equation methods for policy evalua-
tion

• Issues related to simulation-based implementa-
tion

• Multistep projected equation methods

• Bias-variance tradeoff

• Exploration-enhanced implementations

• Oscillations
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REVIEW: PROJECTED BELLMAN EQUATION

• For a fixed policy µ to be evaluated, consider
the corresponding mapping T :

n

(TJ)(i) =
∑

pij
i=1

(

g(i, j)+αJ(j)
)

, i = 1, . . . , n,

or more compactly, TJ = g + αPJ

• Approximate Bellman’s equation J = TJ by
Φr = ΠT (Φr) or the matrix form/orthogonality
condition Cr∗ = d, where

C = Φ′Ξ(I − αP )Φ, d = Φ′Ξg.

S: Subspace spanned by basis functions

T(Φr)

0

Φr = ΠT(Φr)

Projection
on S

Indirect method: Solving a projected 
form of Bellmanʼs equation
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PROJECTED EQUATION METHODS

• Matrix inversion: r∗ = C−1d

• Iterative Projected Value Iteration (PVI) method:

Φrk+1 = ΠT (Φrk) = Π(g + αPΦrk)

Converges to r∗ if ΠT is a contraction. True if Π is
projection w.r.t. steady-state distribution norm.

• Simulation-Based Implementations: Generate
k+1 simulated transitions sequence {i0, i1, . . . , ik
and approximations C

}
k ≈ C and dk ≈ d:

1
Ck =

k
∑

φ(it)
( ′
φ(i ′

t)−αφ(it+1)
)

≈ Φ Ξ(I−αP )Φ
k + 1

t=0

1
dk =

k

(
k + 1

∑

φ(it)g it, it+1)
t=0

≈ Φ′Ξg

• LSTD: r̂k = C−1
k dk

• LSPE: rk+1 = rk −Gk(Ckrk − dk) where

Gk ≈ G = (Φ′ΞΦ)−1

Converges to r∗ if ΠT is contraction.
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ISSUES FOR PROJECTED EQUATIONS

• Implementation of simulation-based solution of
projected equation Φr ≈ Jµ, where Ckr = dk and

C ≈ Φ′ ′
k Ξ(I − αP )Φ, dk ≈ Φ Ξg

• Low-dimensional linear algebra needed for the
simulation-based approximations Ck and dk (of
order s; the number of basis functions).

• Very large number of samples needed to solve
reliably nearly singular projected equations.

• Special methods for nearly singular equations
by simulation exist; see Section 7.3 of the text.

• Optimistic (few sample) methods are more vul-
nerable to simulation error

• Norm mismatch/sampling distribution issue

• The problem of bias: Projected equation solu-
tion 6= ΠJµ, the “closest” approximation of Jµ

• Everything said so far relates to policy evalua-
tion. How about the effect of approximations on
policy improvement?

• We will next address some of these issues
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MULTISTEP METHODS

• Introduce a multistep version of Bellman’s equa-
tion J = T (λ)J , where for λ ∈ [0, 1),

∞

T (λ) = (1− λ) λℓT ℓ+1

ℓ=0

Geometrically weighted sum

∑

of powers of T .

• T ℓ is a contraction with mod. αℓ, w. r. to
weighted Euclidean norm ‖ · ‖ξ, where ξ is the
steady-state probability vector of the Markov chain.

• Hence T (λ) is a contraction with modulus

∞
α(1 λ)

αλ = (1− λ)
∑

αℓ+1λℓ =
−

ℓ=0
1− αλ

Note αλ → 0 as λ → 1 - affects norm mismatch

• T ℓ and T (λ) have the same fixed point Jµ and

1‖Jµ − Φr∗λ‖ξ ≤ √ Π
1

‖Jµ− α2
λ

− Jµ‖ξ

where Φr∗λ is the fixed point of ΠT (λ).

• Φr∗λ depends on λ.
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BIAS-VARIANCE TRADEOFF

Subspace S = {Φr | r ∈ ℜs} Set

Slope Jµ

Simulation error
Simulation error ΠJµ

Simulation error Bias

) λ = 0

= 0 λ = 1 0

. Solution of projected equation Φ

Simulation error Solution of

∗ Φr = ΠT (λ)(Φr)

• From ‖Jµ − Φrλ,µ‖ξ ≤ 1
√ µ

1
‖J

− 2α
λ

− ΠJµ‖ξ
error bound

• As λ ↑ 1, we have αλ ↓ 0, so error bound (and
quality of approximation) improves:

limΦrλ,µ = ΠJµ
λ↑1

• But the simulation noise in approximating
∞

T (λ) = (1− λ)
∑

λℓT ℓ+1

ℓ=0

increases

• Choice of λ is usually based on trial and error
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MULTISTEP PROJECTED EQ. METHODS

• The multistep projected Bellman equation is

Φr = ΠT (λ)(Φr)

• In matrix form: C(λ)r = d(λ), where

C(λ) = Φ′Ξ
(

I − αP (λ)
)

Φ, d(λ) = Φ′Ξg(λ),

with
∞ ∞

P (λ) = (1− λ)
∑

αℓλℓP ℓ+1, g(λ) =
∑

αℓλℓP ℓg
ℓ=0 ℓ=0

• (λ) −1 (λ)
The LSTD(λ) method is

(

Ck

)

dk , where
(λ) (λ)

Ck and dk are simulation-based approximations
of C(λ) and d(λ).

• The LSPE(λ) method is

rk+1 = rk − (λ)
γGk Ck rk − (λ)

dk

whereGk is a simulation-b

(

ased approx. to

)

(Φ′ΞΦ)−1

• TD(λ): An important simpler/slower iteration
[similar to LSPE(λ) with Gk = I - see the text].
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MORE ON MULTISTEP METHODS

• (λ) (λ)
The simulation process to obtain Ck and dk

is similar to the case λ = 0 (single simulation tra-
jectory i0, i1, . . ., more complex formulas)

(λ) 1
Ck =

k k
′

φ(i ) t
t αm−tλm− φ(im) αφ(im+1)

k + 1

∑

t=0 m

∑

=t

(

−
)

(λ) 1
dk =

k k
∑

φ(i t m
t) αm− λ −tgi

k + 1 m

t=0 m=t

• In the context of approx

∑

imate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

• Many different versions (see the text).

• Note the λ-tradeoffs:

− ↑ (λ) (λ)
As λ 1, Ck and dk contain more “sim-
ulation noise”, so more samples are needed
for a close approximation of rλ,µ

− The error bound Jµ Φrλ,µ ξ becomes smaller

− As λ ↑ 1, ΠT (λ)

‖ − ‖
becomes a contraction for

arbitrary projection norm
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APPROXIMATE PI ISSUES - EXPLORATION

• 1st major issue: exploration. Common remedy
is the off-policy approach: Replace P of current
policy with

P = (I −B)P +BQ,

where B is a diagonal matrix with βi ∈ [0, 1] on
the diagonal, and Q is another transition matrix.

• Then LSTD and LSPE formulas must be modi-
fied ... otherwise the policy associated with P (not
P ) is evaluated (see the textbook, Section 6.4).

• Alternatives: Geometric and free-form sampling

• Both of these use multiple short simulated tra-
jectories, with random restart state, chosen to en-
hance exploration (see the text)

• Geometric sampling uses trajectories with geo-
metrically distributed number of transitions with
parameter λ ∈ [0, 1). It implements LSTD(λ) and
LSPE(λ) with exploration.

• Free-form sampling uses trajectories with more
generally distributed number of transitions. It im-
plements method for approximation of the solu-
tion of a generalized multistep Bellman equation.
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APPROXIMATE PI ISSUES - OSCILLATIONS

• Define for each policy µ

Rµ =
{

r | Tµ(Φr) = T (Φr)

• These sets form the greedy partitio

}

n of the pa-
rameter r-space

Rµ =
{

r | Tµ(Φr) = T (Φr)
}

Rµ

{

µ Rµ′

{

′ Rµ′′

′′ Rµ′′′

{ }

For a policy µ, Rµ is the set of all r such that

policy improvement based on Φr produces µ

• Oscillations of nonoptimistic approx.: rµ is gen-
erated by an evaluation method so that Φrµ ≈ Jµ

rµk

k rµk+1

+1 rµk+2

+2 rµk+3

Rµk

Rµk+1

Rµk+2

+2 Rµk+3
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MORE ON OSCILLATIONS/CHATTERING

• For optimistic PI a different picture holds

rµ1

1 rµ2

2 rµ3

Rµ1

Rµ2

2 Rµ3

• Oscillations are less violent, but the “limit”
point is meaningless!

• Fundamentally, oscillations are due to the lack
of monotonicity of the projection operator, i.e.,
J ≤ J ′ does not imply ΠJ ≤ ΠJ ′.

• If approximate PI uses policy evaluation

Φr = (WTµ)(Φr)

with W a monotone operator, the generated poli-
cies converge (to an approximately optimal limit).

• The operator W used in the aggregation ap-
proach has this monotonicity property.
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