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LECTURE 20
LECTURE OUTLINE

e Discounted problems - Approximation on sub-
space {®r | r € R}

e Approximate (fitted) VI

e Approximate PI

e The projected equation

e (Contraction properties - Error bounds
e Matrix form of the projected equation

e Simulation-based implementation

o LLSTD and LSPE methods



REVIEW: APPROXIMATION IN VALUE SPACE

e Finite-spaces discounted problems: Defined by
mappings 1), and T (T'J = min,, T}, J).

e Fxact methods:
- VI Jk_|_1 — TJk
— PI: Ju’“ = Tukju’“’ Tu"““Ju’“ = TJM;C
— LP: minyc’J subject to J < T'J

e Approximate versions: Plug-in subspace ap-
proximation with ®r in place of J

— VI: (I)Tk_|_1 ~ T(I)T'k

— PI: (I)Tk ~ T,uk (I)’I“k, T,uk+1 CI)Tk — TCI)Tk

— LP: min, ¢/®r subject to &r < T'Pr
e Approx. onto subspace S = {®r | r € Rs}
is often done by projection with respect to some
(weighted) Euclidean norm.
e Another possibility is aggregation. Here:

— The rows of ® are probability distributions

— &r =~ J, or &r = J*, with r the solution of
an “aggregate Bellman equation” r = DT),(®r)
or r = DT(®r), where the rows of D are
probability distributions



APPROXIMATE (FITTED) VI

e Approximates sequentially Ji(i) = (T*Jo)(4),
k=1,2,..., with Ji(i;r)

e The starting function Jy is given (e.g., Jo = 0)

e Approximate (Fitted) Value Iteration: A se-
qugntial “fit” to produce Jx11 fr~om gy 1€, Jpp1 &
TJy, or (for a single policy p) Jx4+1 ~ T}, Jx

TJo Tj1 -
| T J>
i :'/
d Jo &s
J1 3

Subspace § = {®r | r € R¢}

Fitted Value Iteration

e After alarge enough number N of steps, Jn (i;7n)
is used as approximation to J*(7)

e Possibly use (approximate) projection II with
respect to some projection norm,

jk_|_1 ~ HTjk



WEIGHTED EUCLIDEAN PROJECTIONS

e (Consider a weighted Euclidean norm

Wl =y > G(I0)’,

where & = (&1,...,&,) is a positive distribution
(& > 0 for all 7).

e Let II denote the projection operation onto
S={dr|r e Rs}
with respect to this norm, i.e., for any J € R,
IIJ = ®or*

where
r* = arg min |[|®r — J||?
g min || ®r — J|
e Recall that weighted Euclidean projection can
be implemented by simulation and least squares,
i.e., sampling J(¢) according to & and solving
k

min >  (¢(ir)'r = J(ii))



FITTED VI - NAIVE IMPLEMENTATION

e Select/sample a “small” subset [ of represen-
tative states

e For each i € I, given jk, compute

e “Fit” the function jk;_|_1(7:;'rk;_|_1) to the “small”
set of values (T'Jg)(¢), @ € I (for example use
some form of approximate projection)

e “Model-free” implementation by simulation
e LError Bound: If the fit is uniformly accurate

within 0 > 0, i.e.,

max [ Jy41(4) — TJy(i)] <6,

then

- J
lim sup max (Ji(i,rk) — J*(i)) <
k—oo =1,..., n 1 — «

e But there is a potential serious problem!



AN EXAMPLE OF FAILURE

e (Consider two-state discounted MDP with states
1 and 2, and a single policy.

— Deterministic transitions: 1 — 2 and 2 — 2
— Transition costs = 0, so J*(1) = J*(2) = 0.

e Consider (exact) fitted VI scheme that approx-
imates cost functions within S = {(r,2r) | r € R}

with a weighted least squares fit; here ® = (1,2)’

e Given Jp = (7k, 21% ), we find jk+1 = (Tka1, 2Tk+1),
where Ji11 = (1)), with weights £ = (&1, &2):

P = argmin |& (r—(TJ,)(1)) "+ (2r—(TJ4)(2))]
e With straightforward calculation

ri+1 = afry,  where 8 =2(§1+282)/(§1+482) > 1

e Soifa>1/8 (e.g., &1 = &2 = 1), the sequence
{rr} diverges and so does {J}.

e Difficulty is that T' is a contraction, but II:7T
(= least squares fit composed with T') is not.



NORM MISMATCH PROBLEM

e For fitted VI to converge, we need 117" to be a
contraction; 7" being a contraction is not enough

Jo=T(TNh)
Ja = HE(TJQ)

Ji =T (T Jo)
Subspace S = {®r | r € Rs}

Fitted Value Iteration with Projection

e We need a ¢ such that 1T is a contraction w. r.
to the weighted Euclidean norm || - ||¢

e Then II;T is a contraction w. r. to | - ||g

e We will come back to this issue, and show how
to choose £ so that II;7), is a contraction for a
given [



APPROXIMATE PI

Guess Initial Policy

Evaluate Approximate Cost

. Approximate Policy
Ju(r) = @r Using Simulation Evaluation

l

«— Generate “Improved” Policy 1 Policy Improvement

e [valuation of typical p: Linear cost function
approximation jﬂ(fr) — ®r, where @ is full rank
n X s matrix with columns the basis functions, and
ith row denoted ¢(7)’.

e Policy “improvement” to generate [
A(i) = arg min > pij(u)(9(i,u,j) + ad(j)r)
e Lrror Bound (same as approximate VI): If

max|juk(i,7“k)—b7uk(i)| <o, kE=0,1,...

the sequence {u*} satisfies

2000
. N el <
llICILSOlipm?X(JMk(Z) J*(i)) < 1 a)



APPROXIMATE POLICY EVALUATION

e Consider approximate evaluation of .J,, the cost
of the current policy u by using simulation.

— Direct policy evaluation - generate cost sam-
ples by simulation, and optimization by least
squares

— Indirect policy evaluation - solving the pro-
jected equation ®r = IIT,(Pr) where II is
projection w/ respect to a suitable weighted
Fuclidean norm

ILJ, Or = I17),(Pr)
0 0
Subspace S = {®r | r € Rs} Subspace S = {®r | r € Rs}
Direct Method: Projection of Indirect Method: Solving a projected
cost vector J, form of Bellman’s equation

e Recall that projection can be implemented by
simulation and least squares



PI WITH INDIRECT POLICY EVALUATION

Guess Initial Policy

'

Evaluate Approximate Cost

~ Approximate Policy
Ju(r) = ®&r Using Simulation Evaluation

l

«— Generate “Improved” Policy Policy Improvement

e Given the current policy u:

— We solve the projected Bellman’s equation

¢r =117, (Pr)

— We approximate the solution J,, of Bellman’s
equation

J=T,J

with the projected equation solution .J, ()



KEY QUESTIONS AND RESULTS

e Does the projected equation have a solution?

e Under what conditions is the mapping II7), a
contraction, so II7), has unique fixed point?

e Assumption: The Markov chain corresponding
to 1 has a single recurrent class and no transient
states, with steady-state prob. vector &, so that

Note that &; is the long—term frequency of state j.

e Proposition: (Norm Matching Property) As-
sume that the projection II is with respect to ||-||¢,
where £ = (&1,...,&,) is the steady-state proba-
bility vector. Then:

(a) T, is contraction of modulus « with re-
spect to || - ||¢.

(b) The unique fixed point ®r* of IIT),, satisfies

| = @r¥|le <

1
m H‘]M R HJM"g



PRELIMINARIES: PROJECTION PROPERTIES

e Important property of the projection II on S
with weighted Euclidean norm || - ||¢. For all J &
Rr, &r € S, the Pythagorean Theorem holds:

|J = @r||z =[] — ILT|[g + [[ILJ — ©r|]¢

J

dr n 11J

Subspace S = {®r | r € Rs}

e The Pythagorean Theorem implies that the pro-
jection is nonexpansive, 1.e.,

ITLT — T ||¢ < || — J]|e, for all J, J € R7.
To see this, note that

|7 = J)||; < 107 =Dl + ||(7 - T =T
= ||J =712 '



PROOF OF CONTRACTION PROPERTY

e [emma: If P is the transition matrix of u,
IPzlle < llzlle, 2z €®m,

where £ is the steady-state prob. vector.
Proof: For all z € 1"

n mn mn mn
1P2l12 =36 [ S pigz | <3 6 pije?
i=1 j=1 =1 j=1
—ZZ&Z%gZ _Z€JZ — HZHg

7=1 1=1

The inequality follows from the convexity of the
quadratic function, and the next to last equality
follows from the defining property Z?:l Eipij = &

e Using the lemma, the nonexpansiveness of II,
and the definition 7),J = g + aPJ, we have

T, J-TT, J|le < | TpJ=Tullle = al|P(J=J)lle < af|J=J]le

for all .J,J € R*. Hence 11T, is a contraction of
modulus o



PROOF OF ERROR BOUND

e Let ®r* be the fixed point of II7T". We have

HJ,LL — (I)T*H&' < H‘]M - HJ/LHS'

1
V1 — a2
Proof: We have

[ = @2 = || T, — T2 + ||TLT, — @+

Ils =

2
3

Jp — IWJ|I2 + [|[OTJ, — IIT(@r) |
Ty — T, 4 a2 1, — @72,

VAN

where

— The first equality uses the Pythagorean The-
orem

— The second equality holds because J,, is the
fixed point of 1" and ®r* is the fixed point
of IIT

— The inequality uses the contraction property
of IIT".

Q.E.D.



MATRIX FORM OF PROJECTED EQUATION

Tu(t];);r-) =g+ aP®r

&r = 1Ty, (Pr)

Subspace S = {®r | r € R}

e The solution ®r* satisfies the orthogonality con-
dition: The error

Or* — (g + aPdr+)

is “orthogonal” to the subspace spanned by the
columns of ®.

e 'This is written as

O'E(Dr* — (9 + aPPr*)) =0,

where Z is the diagonal matrix with the steady-
state probabilities &1, ..., &, along the diagonal.

e Equivalently, C'r* = d, where

C'=d'=Z(l — aP)?, d= ®'=¢g

but computing C' and d is HARD (high-dimensional
inner products). 19



SOLUTION OF PROJECTED EQUATION

e Solve Cr* = d by matrix inversion: r* = C—1d
e Alternative: Projected Value Iteration (PVI)
(I)’I“]H_l — HT((I)’I“k) — H(g + OéP(I)’I“k)

Converges to r* because II1' is a contraction.

Value Iterate
T(Prk) =g + aPdri

[
Projection
onS

I
®ri+1

Prg
0
S: Subspace spanned by basis functions

e PVI can be written as:

rrr1 = arg min ||®r — (g + ozPCI)'rk)Hz

rees

By setting to 0 the gradient with respect to r,
O'E(Priq1 — (9 + aPPry)) =0,

which yields
Tk+1 = Tk — ((I)’E(I))_l(CTk — d)



SIMULATION-BASED IMPLEMENTATIONS

e Key idea: Calculate simulation-based approxi-
mations based on k samples

Ck%C, dk%d

e Approximate matrix inversion r* = C'—1d by
N |
r = Cf “dg

This is the LSTD (Least Squares Temporal Dif-
ferences) method.
e PVI method rg11 =1 — (P'Z2P)~1(Crp — d) is
approximated by

re+1 = 1y — Grp(Crry — di)

where
Gk: ~ ((I)/E(I)) —1

This is the LSPE (Least Squares Policy Evalua-
tion) method.

o Key fact: C%, di, and G can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).



SIMULATION MECHANICS

e We generate an infinitely long trajectory (ig, i1, .. .)
of the Markov chain, so states ¢ and transitions
(4, 7) appear with long-term frequencies &; and p;;.

o After generating each transition (i:,4¢41), We
compute the row ¢(i¢)’ of ® and the cost compo-

nent g(i¢, t¢+1).

e We form

k
1 : L N —
dr = k—+1 E P(1t)g(it, it+1) ~ E §ipij9(i)g (3, J) = d'Eg=d
t=0 i,J

k
1 / / —
Cr =17 Z; (i) (¢(ie) —ad(irs1)) ~ ®'E(I-aP)® = C
t=
Also in the case of LSPE

k
1
= — ' ) ~ D=
Gk P ;:O d(it)p(ie) =~ P'=P

e Convergence based on law of large numbers.

o (%, di, and G can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)

18



OPTIMISTIC VERSIONS

e Instead of calculating nearly exact approxima-
tions C}. =~ C' and dp ~ d, we do a less accurate
approximation, based on few simulation samples

e Evaluate (coarsely) current policy u, then do a
policy improvement

e This often leads to faster computation (as op-
timistic methods often do)

e Very complex behavior (see the subsequent dis-
cussion on oscillations)

e The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling) - particularly if the C' matrix is
ill-conditioned

e LSPE tends to cope better because of its itera-
tive nature (this is true of other iterative methods
as well)

e A stepsize v € (0,1] in LSPE may be useful to
damp the effect of simulation noise

ret+1 = e — YGr(Crry — di)

19
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