6.231 DYNAMIC PROGRAMMING

LECTURE 19

LECTURE OUTLINE

e We begin a lecture series on approximate DP.

e Reading: Chapters 6 and 7, Vol. 2 of the text.

Today we discuss some general issues about
approximation and simulation

We classify /overview the main approaches:

Approximation in policy space (policy para-
metrization, gradient methods, random search)
Approximation in value space (approximate

PI, approximate VI, Q-Learning, Bellman
error approach, approximate LP)

Rollout /Simulation-based single policy iter-
ation (will not discuss this further)

Approximation in value space using problem
approximation (simplification - forms of ag-
gregation - limited lookahead) - will not dis-
cuss much

GENERAL ORIENTATION TO ADP

e ADP (late 80s - present) is a breakthrough
methodology that allows the application of DP to
problems with many or infinite number of states.
e Other names for ADP are:

— “reinforcement learning” (RL)

— “neuro-dynamic programming” (NDP)

e We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

e Extensions to other DP models (continuous
space, continuous-time, not discounted) are possi-
ble (but more quirky). We will set aside for later.
e There are many approaches:
— Problem approximation and 1-step lookahead
— Simulation-based approaches (we will focus
on these)
e Simulation-based methods are of three types:
— Rollout (we will not discuss further)
— Approximation in policy space

— Approximation in value space

WHY DO WE USE SIMULATION?

e One reason: Computational complexity advan-
tage in computing expected values and sums/inner
products involving a very large number of terms
— Speeds up linear algebra: Any sum > ., a;
can be written as an expected value

zn:az' = zn:&@ :Ef{%}v
i=1 pri i

where ¢ is any prob. distribution over {1,...,n}

— It is approximated by generating many sam-
ples {i1,...,ix} from {1,...,n}, according
to &£, and Monte Carlo averaging:

N fal ls~a
;Eﬁ{s}“kgs

— Choice of & makes a difference. Importance
sampling methodology.

e Simulation is also convenient when an analytical
model of the system is unavailable, but a simula-
tion/computer model is possible.

APPROXIMATION IN POLICY SPACE

e A brief discussion; we will return to it later.
e Use parametrization u(i;r) of policies with a
vector r = (r1,...,7s). Examples:
— Polynomial, e.g., u(i;r) =ry +1r2 -+ r3 - 12
— Multi-warehouse inventory system: pu(i;r) is
threshold policy with thresholds r = (ry1,...,7s)
e Optimize the cost over r. For example:

— FEach value of r defines a stationary policy,
with cost starting at state ¢ denoted by J(; 7).

— Let (p1,...,pn) be some probability distri-
bution over the states, and minimize over r

> pid (i)
=1

— Use a random search, gradient, or other method

e A special case: The parameterization of the
policies is indirect, through a cost approximation
architecture J, 1.e.,

u(isr) € argurén[}?)zpw (i u,) + aJ (j; 7))

4

APPROXIMATION IN VALUE SPACE

e Approximate J* or J, from a parametric class
J(i;7r) where 7 is the current state and r = (r1,...,7m)
is a vector of “tunable” scalars weights

e Use J in place of J* or .J,, in various algorithms
and computations (VI, PI, LP)

e Role of r: By adjusting r we can change the
“shape” of J so that it is “close” to J* or J,
e Two key issues:

— The choice of parametric class J(i;7) (the
approximation architecture)

— Method for tuning the weights (“training”
the architecture)

e Success depends strongly on how these issues
are handled ... also on insight about the problem

e A simulator may be used, particularly when
there is no mathematical model of the system

e We will focus on simulation, but this is not the
only possibility

e We may also use parametric approximation for
Q-factors

APPROXIMATION ARCHITECTURES

e Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J(i;7) on r]

e Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

e (Computer chess example:

— Think of board position as state and move
as control

— Uses a feature-based position evaluator that
assigns a score (or approximate ()-factor) to
each position/move

D=p| D8
=[]
15| oy
|
1= s
52

[ome 1>
W |
Jo- b=+
1E |)=>)
it

. I
: Features: ;
: Material balance, !
A | =
__ ¢ | Feature .| Weighting I it
i Extraction of Features
Ax]

s

Position Evaluator

e Relatively few special features and weights, and
multistep lookahead

6

LINEAR APPROXIMATION ARCHITECTURES

e Often, the features encode much of the nonlin-
earity inherent in the cost function approximated

e Then the approximation may be quite accurate
without a complicated architecture. (Extreme ex-
ample: The ideal feature is the true cost function)

e With well-chosen features, we can use a linear
architecture:

~

J(i:r) = ¢(i)'r, Vi or J(r)=®r= Z P ,r;
j=1

®: the matrix whose rows are ¢(i)’, ¢ = 1,...,n,
®; is the jth column of @

‘ Linear Cost
State i | Feature Extraction | Feature Vector ¢(i) Linear Approximator ¢(z)'r

Mapping ks Mapping >

e This is approximation on the subspace

S={dr|r e Rs}
spanned by the columns of ® (basis functions)
e Many examples of feature types: Polynomial

approximation, radial basis functions, domain spe-
cific, etc /

ILLUSTRATIONS: POLYNOMIAL TYPE

e Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be ¢ =
(41,...,%q) (i-e., have ¢ “dimensions”) and define

Linear approximation architecture:

Z r)=ro+ E Tkik + g g Tkmlklm,

k=1 m=k

where r has components rg, 7, and rg,.

e Interpolation: A subset I of special/representative

states is selected, and the parameter vector r has
one component r; per state ¢ € I. The approxi-
mating function is

j(i;r):ri, 1 e 1,

» 4

J(i;:r) = interpolation using the values at i € I, i ¢ I

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.

A DOMAIN SPECIFIC EXAMPLE

e Tetris game (used as testbed in competitions)

Possible
actions

Chosen N
action

Possible “
next states E& RN

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

e J*(i): optimal score starting from position ¢
e Number of states > 2200 (for 10 x 20 board)

e Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)

http://ocw.mit.edu/fairuse

APPROX. PI - OPTION TO APPROX. J, OR @,

e Use simulation to approximate the cost .J, of
the current policy u

e Generate “improved” policy &z by minimizing in
(approx.) Bellman equation

Guess Initial Policy

Evaluate Approximate Cost

) Approximate Policy
Ju(r) = ®r Using Simulation Pualiiatiet

|

«— Generate “Improved” Policy & Policy Improvement

e Altenatively approximate the ()-factors of u

e A survey reference: D. P. Bertsekas, “Approx-
imate Policy Iteration: A Survey and Some New
Methods,” J. of Control Theory and Appl., Vol.
9, 2011, pp. 310-335.

DIRECTLY APPROXIMATING J* OR Q*

e Approximation of the optimal cost function J*
directly (without PI)

— ()-Learning: Use a simulation algorithm to
approximate the Q-factors

Q*(i,u) = g(i,u) + a Yy pij(w)J*(j);
j=1
and the optimal costs

T (i) — 1o (i,
(2) U?&%)Q (2, u)
— Bellman Error approach: Find r to

minEz'{(j(in) - (TJ)(i;T))Q}

r

where FE;{-} is taken with respect to some
distribution over the states

— Approximate Linear Programming (we will
not discuss here)

e ()-learning can also be used with approxima-
tions

e ()-learning and Bellman error approach can also
be used for policy evaluation .

DIRECT POLICY EVALUATION

e (Can be combined with regular and optimistic
policy iteration

e Find r that minimizes ||J, — j(,r)Hg, ie.,

2

Z&;(JM(Z') — j(z,fr)) : &1 some pos. weights
i=1

e Nonlinear architectures may be used

e The linear architecture case: Amounts to pro-
jection of J,, onto the approximation subspace

J,

— T17,

0
Subspace S = {®r | r € Rs}

Direct Method: Projection of
cost vector J,

e Solution by linear least squares methods

POLICY EVALUATION BY SIMULATION

e Projection by Monte Carlo Simulation: Com-
pute the projection I1.J,, of J, on subspace S =
{®r | r € Rs}, with respect to a weighted Fu-
clidean norm || - ||¢

e LEquivalently, find ®r*, where

reis
e Setting to 0 the gradient at r*,

—— (Z §Z-qb(i)qb(i)’> Z&qﬁ(i)h(i)

e Generate samples { (i1, Ju(i1)), . -, (ir, Ju(ix)) }
using distribution &

. 3 -)) 2
r+ = arg min |[@r—J I = arg min 3 &:(Ju(i)—0(i)'r)
1=1

e Approximate by Monte Carlo the two “expected
values” with low-dimensional calculations

k -1k
L = (Z ¢(it)¢(it)’> > i) Julic)

e Equivalent least squares alternative calculation:
k

. : . -\ 2
T = arg miu (gb(zt)’r - Ju(zt))
t:]. 13

INDIRECT POLICY EVALUATION

e An example: Solve the projected equation ®r =
[I7,,(®r) where II is projection w/ respect to a
suitable weighted Euclidean norm (Galerkin ap-
prox.

. Or = 11T, (Pr)
0 0
Subspace S = {®r | r € Rs} Subspace S = {®r | r € Rs}
Direct Method: Projection of Indirect Method: Solving a projected
cost vector J, form of Bellman’s equation

e Solution methods that use simulation (to man-
age the calculation of II)

— TD(\): Stochastic iterative algorithm for solv-
ing ®&r =117, (Pr)

— LSTD(\): Solves a simulation-based approx-
imation w/ a standard solver

— LSPE()M): A simulation-based form of pro-
jected value iteration; essentially

bri1 =17, (Pry) + simulation noise

BELLMAN EQUATION ERROR METHODS

e Another example of indirect approximate policy
evaluation:

min ||®r — T),(Pr) Hg (%)

where || - ||¢ is Euclidean norm, weighted with re-
spect to some distribution &

e It is closely related to the projected equation ap-
proach (with a special choice of projection norm)

e Several ways to implement projected equation
and Bellman error methods by simulation. They
involve:

— Generating many random samples of states
1, using the distribution &

— Generating many samples of transitions (ix, jx)
using the policy u

— Form a simulation-based approximation of
the optimality condition for projection prob-
lem or problem (*) (use sample averages in
place of inner products)

— Solve the Monte-Carlo approximation of the
optimality condition

e Issues for indirect methods: How to generate

the samples? How to calculate r* efficiently? ™

ANOTHER INDIRECT METHOD: AGGREGATION

e An example: Group similar states together into
“aggregate states” xi1,...,Ts; assign a common
cost r; to each group z;. A linear architecture
called hard aggregation.

1000\
1 9 5 100 0
° ° ° 01 0 0
1 T2 1 0 0 0
ok e of d=|10 0 0
| 01 0 0

.7333.8 5134.9 O 0O 1 0
00 1 0

00 0 1/

79

e Solve an “aggregate” DP problem to obtain

r=(T1,...,7Ts).

e More general /mathematical view: Solve
br = &DT,(Pr)

where the rows of D and ® are prob. distributions
(e.g., D and ® “aggregate” rows and columns of
the linear system J =T,,J)

e Compare with projected equation ®r = IIT,,(Pr).
Note: ®D is a projection in some interesting cases

16

AGGREGATION AS PROBLEM APPROXIMATION

Original

System States

Dij (U), g(i7uaj)

Disaggregation Aggregation
Probabilities Probabilities
dxz' * * ¢jy

e Aggregation can be viewed as a systematic ap-
proach for problem approx. Main elements:

— Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

— Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

e Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach

17

THEORETICAL BASIS OF APPROXIMATE PI

e If policies are approximately evaluated using an
approximation architecture such that

max|j(i,rk)—JMk(i)|§(5, k=0,1,...

e If policy improvement is also approximate,

max |(T)x1J)(6,re)—(TT)(i,7x)| <€, k=0,1,...

e Error bound: The sequence {u*} generated by
approximate policy iteration satisfies

- € + 20

lim sup max (J (i) — J*(i)) < 1—a)?

k— 00 v H

e 'T'ypical practical behavior: The method makes
steady progress up to a point and then the iterates
J & oscillate within a neighborhood of J*.
e Oscillations are quite unpredictable.

— Bad examples of oscillations are known.

— In practice oscillations between policies is
probably not the major concern.

— In aggregation case, there are no oscillations

18

THE ISSUE OF EXPLORATION

e To evaluate a policy u, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under u

e (Cost-to-go estimates of underrepresented states
may be highly inaccurate

e This seriously impacts the improved policy &

e This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system)

e Some remedies:

— Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

— QOccasionally generate transitions that use a
randomly selected control rather than the
one dictated by the policy

— Other methods: Use two Markov chains (one
is the chain of the policy and is used to gen-
erate the transition sequence, the other is
used to generate the state sequence).

19

APPROXIMATING Q-FACTORS

e Given J(i;r), policy improvement requires a
model [knowledge of p;;(u) for all u € U(2)]

e Model-free alternative: Approximate (J-factors
(2, u;7) Zp'bj (¢, u,) +aJM(j))

and use for policy improvement the minimization

€ arg min 1, U T
i) € arg min Qi,u;7)

e 7 is an adjustable parameter vector and Q (%, u;)
1S a parametric architecture, such as

(4, u;r) Zrmqﬁmzu

e We can adapt any of the cost approximation
approaches, e.g., projected equations, aggregation

e Use the Markov chain with states (i,u), so
pii(p()) is the transition prob. to (7, u(2)), 0 to
other (7, u/)

e Major concern: Acutely diminished exploration

20

STOCHASTIC ALGORITHMS: GENERALITIES

e (onsider solution of a linear equation x = b +
Ax by using m simulation samples b + wy and
A+Wi, k=1,...,m, where w, W}, are random,
e.g., “simulation noise”

e Think of + = b+ Ax as approximate policy
evaluation (projected or aggregation equations)

e Stoch. approx. (SA) approach: Fork=1,...,m

Try1 = (1 —yg)xk + ”Yk((b + wi) + (A + Wk)xk)

e Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates of b and A

:%Zb—l—wk :%ZA—I—Wk

Then solve x = b,,, + A,,x by matrix inversion

or iteratively
e TD()) and Q-learning are SA methods
e LSTD(A) and LSPE(\) are MCE methods

21

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

