6.231 DYNAMIC PROGRAMMING

LECTURE 17

LECTURE OUTLINE

- Undiscounted problems
- Stochastic shortest path problems (SSP)
- Proper and improper policies
- Analysis and computational methods for SSP
- Pathologies of SSP
- SSP under weak conditions

UNDISCOUNTED PROBLEMS

- System: $x_{k+1} = f(x_k, u_k, w_k)$
- Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$

$$J_{\pi}(x_0) = \limsup_{N \to \infty} \mathop{E}_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k), w_k) \right\}$$

Note that $J_{\pi}(x_0)$ and $J^*(x_0)$ can be $+\infty$ or $-\infty$

• Shorthand notation for DP mappings

$$(TJ)(x) = \min_{u \in U(x)} E_w \left\{ g(x, u, w) + J(f(x, u, w)) \right\}, \ \forall \ x$$
$$(T_\mu J)(x) = E_w \left\{ g(x, \mu(x), w) + J(f(x, \mu(x), w)) \right\}, \ \forall \ x$$

- T and T_{μ} need not be contractions in general, but their monotonicity is helpful (see Ch. 4, Vol. II of text for an analysis).
- SSP problems provide a "soft boundary" between the easy finite-state discounted problems and the hard undiscounted problems.
 - They share features of both.
 - Some nice theory is recovered thanks to the termination state, and special conditions.

SSP THEORY SUMMARY I

- As before, we have a cost-free term. state t, a finite number of states $1, \ldots, n$, and finite number of controls.
- Mappings T and T_{μ} (modified to account for termination state t). For all $i = 1, \ldots, n$:

$$(T_{\mu}J)(i) = g(i,\mu(i)) + \sum_{j=1}^{n} p_{ij}(\mu(i))J(j),$$

$$(TJ)(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u)J(j) \right],$$

or
$$T_{\mu}J = g_{\mu} + P_{\mu}J$$
 and $TJ = \min_{\mu}[g_{\mu} + P_{\mu}J]$.

- Definition: A stationary policy μ is called proper, if under μ , from every state i, there is a positive probability path that leads to t.
- Important fact: (To be shown) If μ is proper, T_{μ} is contraction w. r. t. some weighted sup-norm

$$\max_{i} \frac{1}{v_{i}} |(T_{\mu}J)(i) - (T_{\mu}J')(i)| \le \rho_{\mu} \max_{i} \frac{1}{v_{i}} |J(i) - J'(i)|$$

• T is similarly a contraction if all μ are proper (the case discussed in the text, Ch. 7, Vol. I).

SSP THEORY SUMMARY II

- The theory can be pushed one step further. Instead of all policies being proper, assume that:
 - (a) There exists at least one proper policy
 - (b) For each improper μ , $J_{\mu}(i) = \infty$ for some i
- Example: Deterministic shortest path problem with a single destination t.
 - States <=> nodes; Controls <=> arcs
 - Termination state <=> the destination
 - Assumption (a) <=> every node is connected to the destination
 - Assumption (b) \ll all cycle costs > 0
- Note that T is not necessarily a contraction.
- The theory in summary is as follows:
 - $-J^*$ is the unique solution of Bellman's Eq.
 - μ^* is optimal if and only if $T_{\mu^*}J^* = TJ^*$
 - VI converges: $T^kJ \to J^*$ for all $J \in \Re^n$
 - PI terminates with an optimal policy, if started with a proper policy

SSP ANALYSIS I

- For a proper policy μ , J_{μ} is the unique fixed point of T_{μ} , and $T_{\mu}^{k}J \to J_{\mu}$ for all J (holds by the theory of Vol. I, Section 7.2)
- Key Fact: A μ satisfying $J \geq T_{\mu}J$ for some $J \in \mathbb{R}^n$ must be proper true because

$$J \ge T_{\mu}^{k} J = P_{\mu}^{k} J + \sum_{m=0}^{k-1} P_{\mu}^{m} g_{\mu}$$

since $J_{\mu} = \sum_{m=0}^{\infty} P_{\mu}^{m} g_{\mu}$ and some component of the term on the right blows up as $k \to \infty$ if μ is improper (by our assumptions).

• Consequence: T can have at most one fixed point within \Re^n .

Proof: If J and J' are two fixed points, select μ and μ' such that $J = TJ = T_{\mu}J$ and $J' = TJ' = T_{\mu'}J'$. By preceding assertion, μ and μ' must be proper, and $J = J_{\mu}$ and $J' = J_{\mu'}$. Also

$$J = T^k J \le T^k_{\mu'} J \to J_{\mu'} = J'$$

Similarly, $J' \leq J$, so J = J'.

SSP ANALYSIS II

- We first show that T has a fixed point, and also that PI converges to it.
- Use PI. Generate a sequence of proper policies $\{\mu^k\}$ starting from a proper policy μ^0 .
- μ^1 is proper and $J_{\mu^0} \geq J_{\mu^1}$ since

$$J_{\mu^0} = T_{\mu^0} J_{\mu^0} \ge T J_{\mu^0} = T_{\mu^1} J_{\mu^0} \ge T_{\mu^1}^k J_{\mu^0} \ge J_{\mu^1}$$

- Thus $\{J_{\mu k}\}$ is nonincreasing, some policy $\bar{\mu}$ is repeated and $J_{\bar{\mu}} = TJ_{\bar{\mu}}$. So $J_{\bar{\mu}}$ is fixed point of T.
- Next show that $T^k J \to J_{\bar{\mu}}$ for all J, i.e., VI converges to the same limit as PI. (Sketch: True if $J = J_{\bar{\mu}}$, argue using the properness of $\bar{\mu}$ to show that the terminal cost difference $J J_{\bar{\mu}}$ does not matter.)
- To show $J_{\bar{\mu}} = J^*$, for any $\pi = \{\mu_0, \mu_1, \ldots\}$

$$T_{\mu_0}\cdots T_{\mu_{k-1}}J_0\geq T^kJ_0,$$

where $J_0 \equiv 0$. Take $\limsup as k \to \infty$, to obtain $J_{\pi} \geq J_{\bar{\mu}}$, so $\bar{\mu}$ is optimal and $J_{\bar{\mu}} = J^*$.

SSP ANALYSIS III

• Contraction Property: If all policies are proper (cf. Section 7.1, Vol. I), T_{μ} and T are contractions with respect to a weighted sup norm.

Proof: Consider a new SSP problem where the transition probabilities are the same as in the original, but the transition costs are all equal to -1. Let \hat{J} be the corresponding optimal cost vector. For all μ ,

$$\hat{J}(i) = -1 + \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \hat{J}(j) \le -1 + \sum_{j=1}^{n} p_{ij} (\mu(i)) \hat{J}(j)$$

For $v_i = -\hat{J}(i)$, we have $v_i \geq 1$, and for all μ ,

$$\sum_{j=1}^{n} p_{ij}(\mu(i)) v_j \le v_i - 1 \le \rho v_i, \qquad i = 1, \dots, n,$$

where

$$\rho = \max_{i=1,...,n} \frac{v_i - 1}{v_i} < 1.$$

This implies T_{μ} and T are contractions of modulus ρ for norm $||J|| = \max_{i=1,...,n} |J(i)|/v_i$ (by the results of earlier lectures).

SSP ALGORITHMS

- All the basic algorithms have counterparts under our assumptions; see the text (Ch. 3, Vol. II)
- "Easy" case: All policies proper, in which case the mappings T and T_{μ} are contractions
- Even with improper (infinite cost) policies all basic algorithms have satisfactory counterparts
 - VI and PI
 - Optimistic PI
 - Asynchronous VI
 - Asynchronous PI
 - Q-learning analogs
- ** THE BOUNDARY OF NICE THEORY **
- Serious complications arise under any one of the following:
 - There is no proper policy
 - There is improper policy with finite cost $\forall i$
 - The state space is infinite and/or the control space is infinite [infinite but compact U(i) can be dealt with]

PATHOLOGIES I: DETERM. SHORTEST PATHS

- Two policies, one proper (apply u), one improper (apply u')
- Bellman's equation is

$$J(1) = \min[J(1), b]$$

Set of solutions is $(-\infty, b]$.

- Case b > 0, $J^* = 0$: VI does not converge to J^* except if started from J^* . PI may get stuck starting from the inferior proper policy
- Case b < 0, $J^* = b$: VI converges to J^* if started above J^* , but not if started below J^* . PI can oscillate (if started with u' it generates u, and if started with u it can generate u')

PATHOLOGIES II: BLACKMAILER'S DILEMMA

- Two states, state 1 and the termination state t.
- At state 1, choose $u \in (0,1]$ (the blackmail amount demanded) at a cost -u, and move to t with prob. u^2 , or stay in 1 with prob. $1 u^2$.
- Every stationary policy is proper, but the control set in not finite (also not compact).
- For any stationary μ with $\mu(1) = u$, we have

$$J_{\mu}(1) = -u + (1 - u^2)J_{\mu}(1)$$

from which $J_{\mu}(1) = -\frac{1}{u}$

- Thus $J^*(1) = -\infty$, and there is no optimal stationary policy.
- A nonstationary policy is optimal: demand $\mu_k(1) = \gamma/(k+1)$ at time k, with $\gamma \in (0, 1/2)$.
 - Blackmailer requests diminishing amounts over time, which add to ∞ .
 - The probability of the victim's refusal diminishes at a much faster rate, so the probability that the victim stays forever compliant is strictly positive.

SSP UNDER WEAK CONDITIONS I

• Assume there exists a proper policy, and J^* is real-valued. Let

$$\hat{J}(i) = \min_{\mu: \text{ proper}} J_{\mu}(i), \qquad i = 1, \dots, n$$

Note that we may have $\hat{J} \neq J^*$ [i.e., $\hat{J}(i) \neq J^*(i)$ for some i].

- It can be shown that \hat{J} is the unique solution of Bellman's equation within the set $\{J \mid J \geq \hat{J}\}$
- Also VI converges to \hat{J} starting from any $J \geq \hat{J}$
- The analysis is based on the δ -perturbed problem: adding a small $\delta > 0$ to g. Then:
 - All improper policies have infinite cost for some states in the δ -perturbed problem
 - All proper policies have an additional $O(\delta)$ cost for all states
 - The optimal cost J_{δ}^* of the δ -perturbed problem converges to \hat{J} as $\delta \downarrow 0$
- There is also a PI method that generates a sequence $\{\mu^k\}$ with $J_{\mu^k} \to \hat{J}$. Uses sequence $\delta_k \downarrow 0$, and policy evaluation based on the δ_k -perturbed problems with $\delta_k \downarrow 0$.

SSP UNDER WEAK CONDITIONS II

• J^* need not be a solution of Bellman's equation! Also J_{μ} for an improper policy μ .

• For p = 1/2, we have

$$J_{\mu}(1) = 0$$
, $J_{\mu}(2) = J_{\mu}(5) = 1$, $J_{\mu}(3) = J_{\mu}(7) = 0$, $J_{\mu}(4) = J_{\mu}(6) = 2$,

Bellman Eq. at state 1, $J_{\mu}(1) = \frac{1}{2} (J_{\mu}(2) + J_{\mu}(5))$, is violated.

• References: Bertsekas, D. P., and Yu, H., 2015. "Stochastic Shortest Path Problems Under Weak Conditions," Report LIDS-2909; Math. of OR, to appear. Also the on-line updated Ch. 4 of the text.

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.