6.231 DYNAMIC PROGRAMMING
LECTURE 17
LECTURE OUTLINE

Undiscounted problems

Stochastic shortest path problems (SSP)
Proper and improper policies

Analysis and computational methods for SSP

Pathologies of SSP

SSP under weak conditions



UNDISCOUNTED PROBLEMS

e System: xpy1 = f(xk, ug, W)

e Cost of a policy m = {uo, pt1, ...}

Jr(x0) =limsup FE {Z g(xk,uk(xk),wk)}

N— Yk
oC k=0,1,... k=0

Note that Jr(xp) and J*(x¢) can be 400 or —oo
e Shorthand notation for DP mappings

(TJ)(x) = min E{g(a:,u,w)+J(f(x,u,w))}, vV x

uweU(x) w

(1,)(@) = B {g(w,n@),w) + J (. plw),w)) }, Va

e 7' and T}, need not be contractions in general,
but their monotonicity is helpful (see Ch. 4, Vol.
IT of text for an analysis).

e SSP problems provide a “soft boundary” be-
tween the easy finite-state discounted problems
and the hard undiscounted problems.

— They share features of both.

— Some nice theory is recovered thanks to the
termination state, and special conditions.
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SSP THEORY SUMMARY 1

e As before, we have a cost-free term. state ¢, a
finite number of states 1,...,n, and finite number
of controls.

e Mappings T and T), (modified to account for
termination state t). For allt=1,...,n:

(T J) (1) = g(i, (i) + qu;j (1(3))J (5),

(TJ)(%) :u?&% g(i>U)+ZPij(U)J(J') :

orT,J =g, + P,J and TJ = min,|g,, + P,J]|.

e Definition: A stationary policy u is called proper,
if under u, from every state ¢, there is a positive
probability path that leads to t.

e Important fact: (To be shown) If y is proper,
T,, is contraction w. r. t. some weighted sup-norm

max (T, (1)~ (T T ()] < e |7 (0)~7'(3)

e 7' is similarly a contraction if all © are proper
(the case discussed in the text, Ch. 7, Vol. I).



SSP THEORY SUMMARY 11

e The theory can be pushed one step further.
Instead of all policies being proper, assume that:

(a) There exists at least one proper policy
(b) For each improper u, J, (i) = co for some i
e [Example: Deterministic shortest path problem
with a single destination t.
— States <=> nodes; Controls <=> arcs

— Termination state <=> the destination

— Assumption (a) <=> every node is con-
nected to the destination

— Assumption (b) <=> all cycle costs > 0
e Note that T is not necessarily a contraction.

e The theory in summary is as follows:
— J* is the unique solution of Bellman’s Eq.
— p* is optimal if and only it T}« J* =T J*
— VI converges: TkJ — J* for all J € R

— PI terminates with an optimal policy, if started
with a proper policy



SSP ANALYSIS I

e FLor a proper policy u, J, is the unique fixed
point of T},, and T} J — J,, for all J (holds by the
theory of Vol. I, Section 7.2)

o Key Fact: A p satistying J > T),J for some
J € ’™ must be proper - true because
k—1

J>Th]=PEJ+ > Prg,
m=0
since J, = > _, Pi"g, and some component of

the term on the right blows up as £ — oo if u is
improper (by our assumptions).

e (onsequence: T' can have at most one fixed
point within f~.

Proof: If J and J’ are two fixed points, select u
and p’ such that J =T7J =1,J and J' =TJ" =
T,,J’. By preceding assertion, p and p/ must be
proper, and J = J, and J’ = J,/. Also

J=TF] <TEJ = J,=J
7’

Similarly, J/' < J, so J = J'.



SSP ANALYSIS II

e We first show that 71" has a fixed point, and also
that PI converges to it.

e Use PI. Generate a sequence of proper policies
{uk} starting from a proper policy u0.

e u!is proper and J,0 > J,1 since

JMO = TMOJMO > TJMO = Tuljuo > T,fljuo > Jul

e Thus {J,x} is nonincreasing, some policy fi is
repeated and J; = T'J5. So Jj is fixed point of T'.

e Next show that TFJ — J; for all J, i.e., VI
converges to the same limit as PI. (Sketch: True
it J = Jg, argue using the properness of i1 to show
that the terminal cost difference J — J; does not
matter.)

e To show J; = J*, for any m = {po, p1, ...}
Tyg - 'Tuk;—ljo > Tk Jo,

where Jg = 0. Take limsup as k£ — oo, to obtain
Jr > Jg, so o is optimal and J; = J*.



SSP ANALYSIS III

e Contraction Property: If all policies are proper
(cf. Section 7.1, Vol. 1), T,, and T are contractions
with respect to a weighted sup norm.

Proof: Consider a new SSP problem where the
transition probabilities are the same as in the orig-
inal, but the transition costs are all equal to —1.

Let J be the corresponding optimal cost vector.
For all p,

n

J(@) = =14 min > pi(w) () < 14+ pii (#(2) I(5)

For v; = —j(i), we have v; > 1, and for all u,

1
Y <1

1=1,....n  V;

This implies T}, and 71" are contractions of modu-
lus p for norm ||J|| = max;=1,... » |J(2)|/vi (by the
results of earlier lectures). 7



SSP ALGORITHMS

e All the basic algorithms have counterparts un-
der our assumptions; see the text (Ch. 3, Vol. II)

e “Easy” case: All policies proper, in which case
the mappings 1" and 7, are contractions

e Even with improper (infinite cost) policies all
basic algorithms have satisfactory counterparts

— VI and PI

— Optimistic PI

— Asynchronous VI

— Asynchronous PI

— Q-learning analogs
e ** THE BOUNDARY OF NICE THEORY **
e Serious complications arise under any one of the
following:

— There is no proper policy

— There is improper policy with finite cost V ¢

— The state space is infinite and /or the control
space is infinite [infinite but compact U (%)
can be dealt with]



PATHOLOGIES I: DETERM. SHORTEST PATHS
tbcu, Cost 0

t b Destination

e Two policies, one proper (apply u), one im-
proper (apply u’)

e Bellman’s equation is
J(1) = min|J(1), ]

Set of solutions is (—oo, b].

e Case b > 0, J* = 0: VI does not converge to
J* except if started from J*. PI may get stuck
starting from the inferior proper policy

e Case b < 0, J* = b: VI converges to J* if
started above J*, but not if started below J*. PI
can oscillate (if started with u/ it generates u, and
if started with u it can generate u’)



PATHOLOGIES II: BLACKMAILER’S DILEMMA

e Two states, state 1 and the termination state t.

e At state 1, choose u € (0,1] (the blackmail
amount demanded) at a cost —u, and move to ¢
with prob. u?, or stay in 1 with prob. 1 — u?2.

e Every stationary policy is proper, but the con-
trol set in not finite (also not compact).

e For any stationary p with p(1) = u, we have
Ju(1) = —u+ (1 —u?)Ju(1)

from which J,(1) = _%

e Thus J*(1) = —oo, and there is no optimal
stationary policy.

e A nonstationary policy is optimal: demand
k(1) =~/(k+ 1) at time k, with v € (0,1/2).
— Blackmailer requests diminishing amounts over
time, which add to oo.

— The probability of the victim’s refusal dimin-
ishes at a much faster rate, so the probabil-
ity that the victim stays forever compliant is
strictly positive.
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SSP UNDER WEAK CONDITIONS I

e Assume there exists a proper policy, and J* is
real-valued. Let

J(z):wg%é%er(fu(z), i=1,...,n

Note that we may have J % J* [i.e., J(3) # J*(i)
for some i].

e It can be shown that .J is the unique solution
of Bellman’s equation within the set {J | J > J}

e Also VI converges to J starting from any J > J

e The analysis is based on the d-perturbed prob-
lem: adding a small 0 > 0 to g. Then:

— All improper policies have infinite cost for
some states in the o-perturbed problem

— All proper policies have an additional O(¢)
cost for all states

— The optimal cost J§ of the 0-perturbed prob-
lem converges to J as § | 0

e 'There is also a PI method that generates a
sequence {u*} with J x — J. Uses sequence &y |
0, and policy evaluation based on the og-perturbed
problems with dx | O. 1



SSP UNDER WEAK CONDITIONS II

e J* need not be a solution of Bellman’s equation!
Also J,, for an improper policy pu.

Cost 0

Cost —2 Cost 1 Cost —1

Destination

Cost 0

e For p=1/2, we have

Ju(1) =0, Ju(2) = Ju(®) =1, Ju(3) = Ju(7) =0, Ju(4) = Ju(6) = 2,

Bellman Eq. at state 1, J,, (1) = 2 (J.(2)+Ju(5)),
is violated.

e References: Bertsekas, D. P., and Yu, H., 2015.
“Stochastic Shortest Path Problems Under Weak
Conditions,” Report LIDS-2909; Math. of OR, to
appear. Also the on-line updated Ch. 4 of the
text. 2
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