6.231 DYNAMIC PROGRAMMING

LECTURE 16

LECTURE OUTLINE

- Review of computational theory of discounted problems
- Value iteration (VI), policy iteration (PI)
- Optimistic PI
- Computational methods for generalized discounted DP
- Asynchronous algorithms

DISCOUNTED PROBLEMS

Stationary system with arbitrary state space

$$x_{k+1} = f(x_k, u_k, w_k), \qquad k = 0, 1, \dots$$

• Bounded g. Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$

$$J_{\pi}(x_0) = \lim_{N \to \infty} \mathop{E}_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

• Shorthand notation for DP mappings (*n*-state Markov chain case)

$$(TJ)(x) = \min_{u \in U(x)} E\{g(x, u, w) + \alpha J(f(x, u, w))\}, \ \forall \ x$$

TJ is the optimal cost function for the one-stage problem with stage cost g and terminal cost αJ .

• For any stationary policy μ

$$(T_{\mu}J)(x) = E\{g(x,\mu(x),w) + \alpha J(f(x,\mu(x),w))\}, \forall x$$

Note: T_{μ} is linear [in short $T_{\mu}J = P_{\mu}(g_{\mu} + \alpha J)$].

"SHORTHAND" THEORY – A SUMMARY

• Cost function expressions (with $J_0 \equiv 0$)

$$J_{\pi} = \lim_{k \to \infty} T_{\mu_0} T_{\mu_1} \cdots T_{\mu_k} J_0, \quad J_{\mu} = \lim_{k \to \infty} T_{\mu}^k J_0$$

- Bellman's equation: $J^* = TJ^*, J_{\mu} = T_{\mu}J_{\mu}$
- Optimality condition:

$$\mu$$
: optimal $\langle ==>$ $T_{\mu}J^*=TJ^*$

- Contraction: $||TJ_1 TJ_2|| \leq \alpha ||J_1 J_2||$
- \bullet Value iteration: For any (bounded) J

$$J^* = \lim_{k \to \infty} T^k J$$

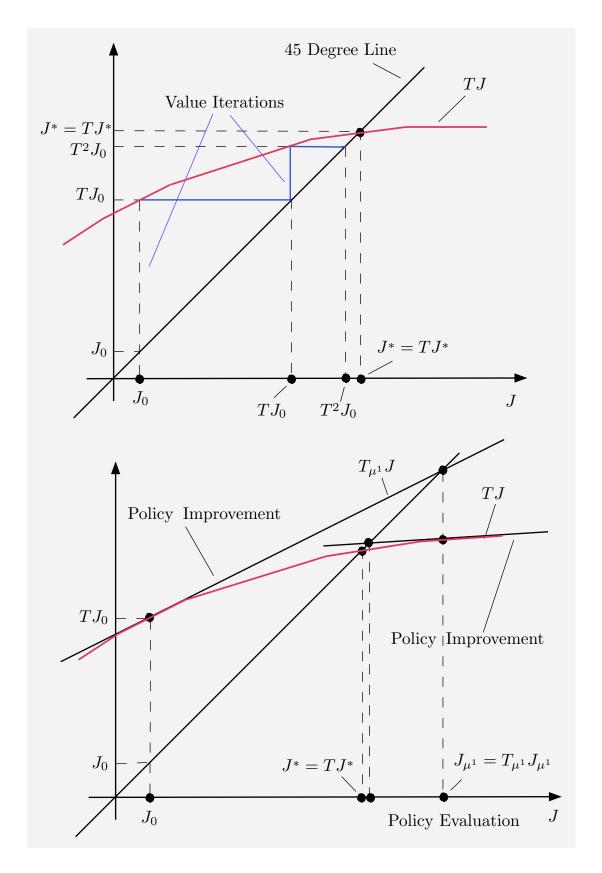
- Policy iteration: Given μ^k ,
 - Policy evaluation: Find $J_{\mu k}$ by solving

$$J_{\mu^k} = T_{\mu^k} J_{\mu^k}$$

- Policy improvement: Find μ^{k+1} such that

$$T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$$

INTERPRETATION OF VI AND PI



VI AND PI METHODS FOR Q-LEARNING

• We can write Bellman's equation as

$$J^*(i) = \min_{u \in U(i)} Q^*(i, u) \qquad i = 1, \dots, n,$$

where Q^* is the vector of optimal Q-factors

$$Q^*(i, u) = \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J^*(j))$$

- VI and PI for Q-factors are mathematically equivalent to VI and PI for costs.
- They require equal amount of computation ... they just need more storage.
- For example, we can write the VI method as

$$J_{k+1}(i) = \min_{u \in U(i)} Q_{k+1}(i, u), \qquad i = 1, \dots, n,$$

where Q_{k+1} is generated for all i and $u \in U(i)$ by

$$Q_{k+1}(i, u) = \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \min_{v \in U(j)} Q_k(j, v) \right)$$

APPROXIMATE PI

• Suppose that the policy evaluation is approximate, according to,

$$\max_{x} |J_k(x) - J_{\mu^k}(x)| \le \delta, \qquad k = 0, 1, \dots$$

and policy improvement is approximate, according to,

$$\max_{x} |(T_{\mu^{k+1}}J_k)(x) - (TJ_k)(x)| \le \epsilon, \qquad k = 0, 1, \dots$$

where δ and ϵ are some positive scalars.

• Error Bound: The sequence $\{\mu^k\}$ generated by approximate policy iteration satisfies

$$\limsup_{k \to \infty} \max_{x \in S} \left(J_{\mu^k}(x) - J^*(x) \right) \le \frac{\epsilon + 2\alpha \delta}{(1 - \alpha)^2}$$

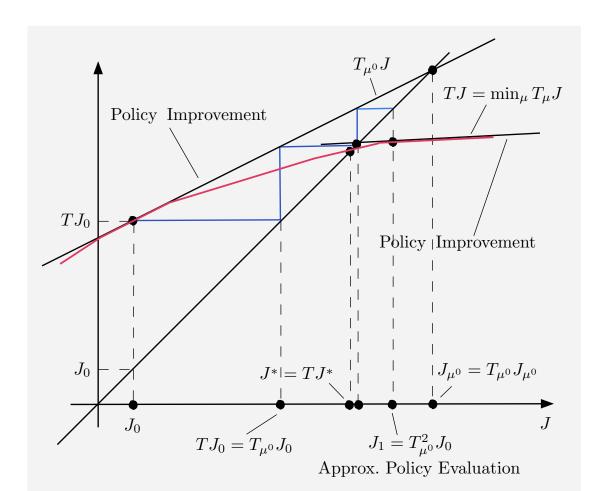
• Typical practical behavior: The method makes steady progress up to a point and then the iterates $J_{\mu k}$ oscillate within a neighborhood of J^* .

OPTIMISTIC PI

- This is PI, where policy evaluation is carried out by a finite number of VI
- Shorthand definition: For some integers m_k

$$T_{\mu k} J_k = T J_k, \qquad J_{k+1} = T_{\mu k}^{m_k} J_k, \qquad k = 0, 1, \dots$$

- If $m_k \equiv 1$ it becomes VI
- If $m_k = \infty$ it becomes PI
- For intermediate values of m_k , it is generally more efficient than either VI or PI



EXTENSIONS TO GENERALIZED DISC. DP

- All the preceding VI and PI methods extend to generalized/abstract discounted DP.
- Summary: For a mapping $H: X \times U \times R(X) \mapsto \Re$, consider

$$(TJ)(x) = \min_{u \in U(x)} H(x, u, J), \qquad \forall \ x \in X.$$

$$(T_{\mu}J)(x) = H(x, \mu(x), J), \quad \forall x \in X.$$

• We want to find J^* such that

$$J^*(x) = \min_{u \in U(x)} H(x, u, J^*), \qquad \forall \ x \in X$$

and a μ^* such that $T_{\mu^*}J^* = TJ^*$.

• Discounted, Discounted Semi-Markov, Minimax

$$H(x, u, J) = E\{g(x, u, w) + \alpha J(f(x, u, w))\}$$

$$H(x, u, J) = G(x, u) + \sum_{y=1}^{n} m_{xy}(u)J(y)$$

$$H(x,u,J) = \max_{w \in W(x,u)} \left[g(x,u,w) + \alpha J \big(f(x,u,w) \big) \right]$$

ASSUMPTIONS AND RESULTS

• Monotonicity assumption: If $J, J' \in R(X)$ and $J \leq J'$, then

$$H(x, u, J) \le H(x, u, J'), \qquad \forall \ x \in X, \ u \in U(x)$$

- Contraction assumption:
 - For every $J \in B(X)$, the functions $T_{\mu}J$ and TJ belong to B(X).
 - For some $\alpha \in (0,1)$ and all $J, J' \in B(X), H$ satisfies

$$\left|H(x,u,J) - H(x,u,J')\right| \leq \alpha \max_{y \in X} \left|J(y) - J'(y)\right|$$

for all $x \in X$ and $u \in U(x)$.

- Standard algorithmic results extend:
 - Generalized VI converges to J^* , the unique fixed point of T
 - Generalized PI and optimistic PI generate $\{\mu^k\}$ such that

$$\lim_{k \to \infty} \|J_{\mu^k} - J^*\| = 0, \qquad \lim_{k \to \infty} \|J_k - J^*\| = 0$$

• Analytical Approach: Start with a problem, match it with an H, invoke the general results.

ASYNCHRONOUS ALGORITHMS

- Motivation for asynchronous algorithms
 - Faster convergence
 - Parallel and distributed computation
 - Simulation-based implementations
- General framework: Partition X into disjoint nonempty subsets X_1, \ldots, X_m , and use separate processor ℓ updating J(x) for $x \in X_{\ell}$.
- Let J be partitioned as $J = (J_1, \ldots, J_m)$, where J_{ℓ} is the restriction of J on the set X_{ℓ} .
- Synchronous algorithm: Processor ℓ updates J for the states $x \in X_{\ell}$ at all times t,

$$J_{\ell}^{t+1}(x) = T(J_1^t, \dots, J_m^t)(x), \quad x \in X_{\ell}, \ \ell = 1, \dots, m$$

• Asynchronous algorithm: Processor ℓ updates J for the states $x \in X_{\ell}$ only at a subset of times \mathcal{R}_{ℓ} ,

$$J_{\ell}^{t+1}(x) = \begin{cases} T(J_1^{\tau_{\ell 1}(t)}, \dots, J_m^{\tau_{\ell m}(t)})(x) & \text{if } t \in \mathcal{R}_{\ell}, \\ J_{\ell}^{t}(x) & \text{if } t \notin \mathcal{R}_{\ell} \end{cases}$$

where $t - \tau_{\ell j}(t)$ are communication "delays"

ONE-STATE-AT-A-TIME ITERATIONS

- Important special case: Assume n "states", a separate processor for each state, and no delays
- Generate a sequence of states $\{x^0, x^1, \ldots\}$, generated in some way, possibly by simulation (each state is generated infinitely often)
- Asynchronous VI: Change any one component of J^t at time t, the one that corresponds to x^t :

$$J^{t+1}(\ell) = \begin{cases} T(J^t(1), \dots, J^t(n))(\ell) & \text{if } \ell = x^t, \\ J^t(\ell) & \text{if } \ell = x^t, \\ \end{pmatrix}$$

• The special case where

$$\{x^0, x^1, \ldots\} = \{1, \ldots, n, 1, \ldots, n, 1, \ldots\}$$

is the Gauss-Seidel method

- More generally, the components used at time t are delayed by $t \tau_{\ell j}(t)$
- Flexible in terms of timing and "location" of the iterations
- We can show that $J^t \to J^*$ under assumptions typically satisfied in DP

ASYNCHRONOUS CONV. THEOREM I

- Assume that for all $\ell, j = 1, ..., m$, the set of times \mathcal{R}_{ℓ} is infinite and $\lim_{t \to \infty} \tau_{\ell j}(t) = \infty$
- Proposition: Let T have a unique fixed point J^* , and assume that there is a sequence of nonempty subsets $\{S(k)\} \subset R(X)$ with $S(k+1) \subset S(k)$ for all k, and with the following properties:
 - (1) Synchronous Convergence Condition: Every sequence $\{J^k\}$ with $J^k \in S(k)$ for each k, converges pointwise to J^* . Moreover, we have

$$TJ \in S(k+1), \quad \forall J \in S(k), k = 0, 1, \dots$$

(2) Box Condition: For all k, S(k) is a Cartesian product of the form

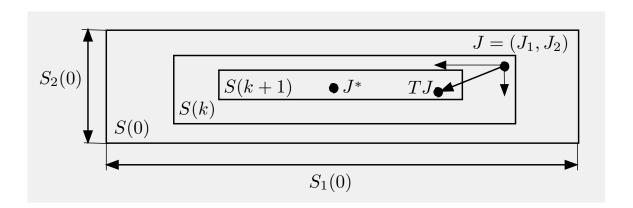
$$S(k) = S_1(k) \times \cdots \times S_m(k),$$

where $S_{\ell}(k)$ is a set of real-valued functions on X_{ℓ} , $\ell = 1, \ldots, m$.

Then for every $J \in S(0)$, the sequence $\{J^t\}$ generated by the asynchronous algorithm converges pointwise to J^* .

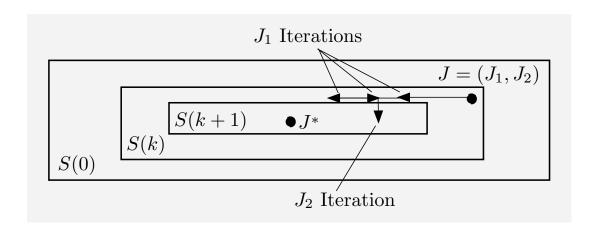
ASYNCHRONOUS CONV. THEOREM II

• Interpretation of assumptions:



A synchronous iteration from any J in S(k) moves into S(k+1) (component-by-component)

• Convergence mechanism:



Key: "Independent" component-wise improvement. An asynchronous component iteration from any J in S(k) moves into the corresponding component portion of S(k+1) permanently!

PRINCIPAL DP APPLICATIONS

- The assumptions of the asynchronous convergence theorem are satisfied in two principal cases:
 - When T is a (weighted) sup-norm contraction.
 - When T is monotone and the Bellman equation J = TJ has a unique solution.
- The theorem can be applied also to convergence of asynchronous optimistic PI for:
 - Discounted problems (Section 2.6.2 of the text).
 - SSP problems (Section 3.5 of the text).
- There are variants of the theorem that can be applied in the presence of special structure.
- Asynchronous convergence ideas also underlie stochastic VI algorithms like Q-learning.

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.