
6.231 DYNAMIC PROGRAMMING

LECTURE 16

LECTURE OUTLINE

• Review of computational theory of discounted
problems

• Value iteration (VI), policy iteration (PI)

• Optimistic PI

• Computational methods for generalized dis-
counted DP

• Asynchronous algorithms

1

DISCOUNTED PROBLEMS

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Bounded g. Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E

{

αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

}

∑

()

• Shorthand notation for DP mappings (n-state
Markov chain case)

(TJ)(x) = min E g(x, u, w)+αJ f(x, u, w) ,
u∈U(x)

∀ x

TJ is the optimal c

{

ost function for

(

the one-st

)

a

}

ge
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E
{

g(x, µ(x), w)+αJ f(x, µ(x), w) , ∀ x

Note: Tµ is linear [in short TµJ =

(

Pµ(gµ + αJ

)

)

}

].

2

“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions (with J0 ≡ 0)

Jπ = lim Tµ0Tµ1 · · ·Tµk
J0, Jµ = lim T k

µJ0
k→∞ k→∞

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Contraction: ‖TJ1 − TJ2‖ ≤ α‖J1 − J2‖
• Value iteration: For any (bounded) J

J∗ = lim T kJ
k→∞

• Policy iteration: Given µk,

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk

3

INTERPRETATION OF VI AND PI

J J∗ = TJ∗

0 Prob. = 1

J J∗ = TJ∗

0 Prob. = 1

∗ TJ

Prob. = 1 Prob. =

∗ TJ

Prob. = 1 Prob. =

1 J J

TJ 45 Degree Line

Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

J Jµ1 = Tµ1Jµ1

Policy Improvement Exact Policy Evaluation Approximate Policy

Evaluation

Policy Improvement Exact Policy Evaluation Approximate Policy

Evaluation

TJ Tµ1J J

Policy Improvement Exact Policy Evaluation (Exact if

J0

J0

J0

J0

= TJ0

= TJ0

= TJ0

Do not Replace Set S

= T 2J0

Do not Replace Set S

= T 2J0

n Value Iterations

4

VI AND PI METHODS FOR Q-LEARNING

• We can write Bellman’s equation as

J∗(i) = min Q∗(i, u) i = 1, . . . , n,
u∈U(i)

where Q∗ is the vector of optimal Q-factors

n

Q∗(i, u) =
∑

p ∗
ij(u)

j=

(

g(i, u, j) + αJ (j)
1

)

• VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs.

• They require equal amount of computation ...
they just need more storage.

• For example, we can write the VI method as

Jk+1(i) = min Qk+1(i, u), i = 1, . . . , n,
u∈U(i)

where Qk+1 is generated for all i and u ∈ U(i) by

n

Qk+1(i, u) =
∑

pij(u)

(

g(i, u, j) + α min Qk(j, v)
v∈U(j)

j=1

)

5

APPROXIMATE PI

• Suppose that the policy evaluation is approxi-
mate, according to,

max |Jk(x) Jµk(x) δ, k = 0, 1, . . .
x

− | ≤

and policy improvement is approximate, according
to,

max |(Tµk+1Jk)(x) (TJk)(x) ǫ, k = 0, 1, . . .
x

− | ≤

where δ and ǫ are some positive scalars.

• Error Bound: The sequence {µk} generated by
approximate policy iteration satisfies

() ǫ+ 2αδ
lim supmax Jµk(x)
k→∞

− J∗(x)
x∈S

≤
(1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.

6

OPTIMISTIC PI

• This is PI, where policy evaluation is carried
out by a finite number of VI

• Shorthand definition: For some integers mk

m
TµkJk = TJk, J k

k+1 = T
µk Jk, k = 0, 1, . . .

− If mk ≡ 1 it becomes VI

− If mk = ∞ it becomes PI

− For intermediate values of mk, it is generally
more efficient than either VI or PI

TJ = minµ TµJ

J J∗ = TJ∗

0 Prob. = 1

1 J J

Policy Improvement Exact Policy Evaluation Approximate Policy

Evaluation

Policy Improvement Exact Policy Evaluation Approximate Policy

Evaluation

J0

J0

= TJ0

J Jµ0 = Tµ0Jµ0

= TJ0 = Tµ0J0 J1 = T 2

µ0J0

Tµ0J

Approx. Policy Evaluation

7

EXTENSIONS TO GENERALIZED DISC. DP

• All the preceding VI and PI methods extend to
generalized/abstract discounted DP.

• Summary: For a mapping H : X×U×R(X) 7→
ℜ, consider

(TJ)(x) = min H(x, u, J), x
u∈U(x)

∀ ∈ X.

(TµJ)(x) = H x, µ(x), J , ∀ x ∈ X.

• We want to find

(

J∗ such th

)

at

J∗(x) = min H(x, u, J∗), x
u∈U(x)

∀ ∈ X

and a µ∗ such that T ∗ ∗
µ∗J = TJ .

• Discounted, Discounted Semi-Markov, Minimax

H(x, u, J) = E
{

g(x, u, w) + αJ
(

f(x, u, w)

n

)}

H(x, u, J) = G(x, u) +
∑

mxy(u)J(y)
y=1

H(x, u, J) = max
[

g(x, u, w)+αJ ,
w∈W (x,)

(

f(x u,w)
u

)]

8

ASSUMPTIONS AND RESULTS

• Monotonicity assumption: If J, J ′ ∈ R(X) and
J ≤ J ′, then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x)

• Contraction assumption:

− For every J ∈ B(X), the functions TµJ and
TJ belong to B(X).

− For some α ∈ (0, 1) and all J, J ′ ∈ B(X), H
satisfies

∣

∣H(x, u, J)−H(x, u, J ′)
∣

≤ αmax
y∈X

∣

J(y)−J ′(y)
∣

for all x X

∣ ∣

∣

∈ and u ∈ U(x).

• Standard algorithmic results extend:

− Generalized VI converges to J∗, the unique
fixed point of T

− Generalized PI and optimistic PI generate
{µk} such that

lim ‖J J∗
µk− ‖ = 0, lim

k→∞ k→∞
‖Jk−J∗‖ = 0

• Analytical Approach: Start with a problem,
match it with an H , invoke the general results.

9

ASYNCHRONOUS ALGORITHMS

• Motivation for asynchronous algorithms

− Faster convergence

− Parallel and distributed computation

− Simulation-based implementations

• General framework: Partition X into disjoint
nonempty subsets X1, . . . , Xm, and use separate
processor ℓ updating J(x) for x ∈ Xℓ.

• Let J be partitioned as J = (J1, . . . , Jm), where
Jℓ is the restriction of J on the set Xℓ.

• Synchronous algorithm: Processor ℓ updates J
for the states x ∈ Xℓ at all times t,

J t+1
ℓ (x) = T (J t

1, . . . , J
t
m)(x), x ∈ Xℓ, ℓ = 1, . . . ,m

• Asynchronous algorithm: Processor ℓ updates
J for the states x ∈ Xℓ only at a subset of times
Rℓ,

{
(τℓ1(t) τ (t)

t+1 T J1 , . . . , J ℓm (x) if t ,Jℓ (x) = m

)

∈ Rℓ

J t
ℓ(x) if t ∈/ Rℓ

where t− τℓj(t) are communication “delays”
10

ONE-STATE-AT-A-TIME ITERATIONS

• Important special case: Assume n “states”, a
separate processor for each state, and no delays

• Generate a sequence of states {x0, x1, . . .}, gen-
erated in some way, possibly by simulation (each
state is generated infinitely often)

• Asynchronous VI: Change any one component
of J t at time t, the one that corresponds to xt:

t+1 T J t(1), . . . , J t(n) (ℓ) if ℓ = xt,
J (ℓ) =

{

J t

(

(ℓ)

)

if ℓ
6
= xt,

• The special case where

{x0, x1, . . .} = {1, . . . , n, 1, . . . , n, 1, . . .}

is the Gauss-Seidel method

• More generally, the components used at time t
are delayed by t− τℓj(t)

• Flexible in terms of timing and “location” of
the iterations

• We can show that J t → J∗ under assumptions
typically satisfied in DP

11

ASYNCHRONOUS CONV. THEOREM I

• Assume that for all ℓ, j = 1, . . . ,m, the set of
times Rℓ is infinite and limt→∞ τℓj(t) = ∞
• Proposition: Let T have a unique fixed point J∗,
and assume that there is a sequence of nonempty
subsets

{

S(k)
}

⊂ R(X) with S(k + 1) ⊂ S(k) for
all k, and with the following properties:

(1) Synchronous Convergence Condition: Ev-
ery sequence {Jk} with Jk ∈ S(k) for each
k, converges pointwise to J∗. Moreover, we
have

TJ ∈ S(k+1), ∀ J ∈ S(k), k = 0, 1,

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = S1(k)× · · · × Sm(k),

where Sℓ(k) is a set of real-valued functions
on Xℓ, ℓ = 1, . . . ,m.

Then for every J ∈ S(0), the sequence {J t} gen-
erated by the asynchronous algorithm converges
pointwise to J∗.

12

ASYNCHRONOUS CONV. THEOREM II

• Interpretation of assumptions:

(0)
) + 1)

∗

(0)

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

• Convergence mechanism:

S(0)

(0)

S(k)
)

S(k + 1)

+ 1)

J∗ ∗

J = (J1, J2)

J1 Iterations

Iterations

J2 Iteration

Key: “Independent” component-wise improvement.
An asynchronous component iteration from any J
in S(k) moves into the corresponding component
portion of S(k + 1) permanently!

13

S(0)
(0) S(k)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

S1(0)

(0) S2(0)
TJ

(0)
) + 1)

∗

Iterations

PRINCIPAL DP APPLICATIONS

• The assumptions of the asynchronous conver-
gence theorem are satisfied in two principal cases:

− When T is a (weighted) sup-norm contrac-
tion.

− When T is monotone and the Bellman equa-
tion J = TJ has a unique solution.

• The theorem can be applied also to convergence
of asynchronous optimistic PI for:

− Discounted problems (Section 2.6.2 of the
text).

− SSP problems (Section 3.5 of the text).

• There are variants of the theorem that can be
applied in the presence of special structure.

• Asynchronous convergence ideas also underlie
stochastic VI algorithms like Q-learning.

14

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

