6.231 DYNAMIC PROGRAMMING
LECTURE 16
LECTURE OUTLINE

e Review of computational theory of discounted
problems

e Value iteration (VI), policy iteration (PI)
e Optimistic PI

e C(Computational methods for generalized dis-
counted DP

e Asynchronous algorithms



DISCOUNTED PROBLEMS

e Stationary system with arbitrary state space

Lk+1 :f(a:k,uk,wk), k:O,l,...

e Bounded g. Cost of a policy m = {uo, p1, .-}

Jx(zo) = lim  E {Z @kg(ﬂfk,ﬂk(fﬁk)awk)}

N — oo Wi
k=0,1,... k=0

e Shorthand notation for DP mappings (n-state
Markov chain case)

(TJ)(x) = uéﬂ(}&) E{g(z,u,w)+al(f(z,u,w))}, Vo

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J.

e For any stationary policy

(T,7)(@) = E{g(a, ul(x), w)+aJ (f (e, p(z),w)) }, V@

Note: T}, is linear [in short T),J = P, (g, + aJ)].



“SHORTHAND” THEORY - A SUMMARY

e Cost function expressions (with Jo = 0)

Jr= lim TuTpuy - TuyJo, Ju= lim T} Jg

k— o0 k— oo
e DBellman’s equation: J* =TJ*, J, =1,J,
e Optimality condition:

p: optimal <==> T, J*=TJ*

e Contraction: ||TJ1 — TJ2|| < «af|J1 — J2
e Value iteration: For any (bounded) J

J* = lim TkJ

k— o0

e Policy iteration: Given u*,

— Policy evaluation: Find J x by solving
S =T ki
— Policy improvement: Find pf+1 such that

Loprrd o =TJ 1k



INTERPRETATION OF VI AND PI
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VI AND PI METHODS FOR Q-LEARNING

e We can write Bellman’s equation as

J*(i) = min Q*(i, =1,....n,
(2) ugn(}r(li)Q (tu) n

where (O* is the vector of optimal Q-factors

Q*(4,u) = ZPz‘j(U) (9(i,u, J) + aJ*(4))

e VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs.

e They require equal amount of computation ...
they just need more storage.

e For example, we can write the VI method as

Jr+1(7) = min Qr41(7,u), i=1,...,n,
uel (7)

where Q11 is generated for all ¢ and u € U(i) by

veU(j)

Qunlivn) = Y pis(w) (960 ud) +a min Qo))
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APPROXIMATE PI

e Suppose that the policy evaluation is approxi-
mate, according to,

max | Ji(x) — J k(z)] <9, k=0,1,...

and policy improvement is approximate, according
to,

mgx|(Tﬂk+1Jk)(x)—(TJk)($)| < €, Ek=0,1,...

where 0 and e are some positive scalars.

e Frror Bound: The sequence {u*} generated by
approximate policy iteration satisfies

: . € + 20
hlf:isolip rgggc(Juk () —J (:U)) < 1—a)p

e 'T'ypical practical behavior: The method makes
steady progress up to a point and then the iterates

J . oscillate within a neighborhood of J*.



OPTIMISTIC PI

e This is PI, where policy evaluation is carried
out by a finite number of VI

e Shorthand definition: For some integers my

ToiJy = TJg, JkH:T:}ka, k=0,1,...

— If mp =1 it becomes VI

— If my = oo it becomes PI

— For intermediate values of my, it is generally
more efficient than either VI or PI
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EXTENSIONS TO GENERALIZED DISC. DP

e All the preceding VI and PI methods extend to
generalized /abstract discounted DP.

e Summary: For a mapping H : X XU x R(X) —
R, consider

(TJ)(x) = min H(x,u,J), VzelX.
ueU(x)

(TuJ)(x) = H(z, p(x), J), VarelX.
e We want to find J* such that

J*(x) = min H(xz,u,J*), VeelX
uelU(x)

and a p* such that T}« J* =T J*.
e Discounted, Discounted Semi-Markov, Minimax

H(x,u,J)= E{g(x,u,w) +aJ(f(a:,u, w))}

H(z,u,J)=G(z,u —I—mey



ASSUMPTIONS AND RESULTS

e Monotonicity assumption: If J, J’ € R(X) and
J < J’, then

H(x,u,J) < H(z,u,J), Vre X, ueU(x)

e (ontraction assumption:

— For every J € B(X), the functions T},J and
T'J belong to B(X).

— For some o € (0,1) and all J,J' € B(X), H
satisfies

|H (x,u, J)—H (z,u,J")| < amax |J(y)—J(y)
yeX ‘

for all z € X and u € U(x).

e Standard algorithmic results extend:

— Generalized VI converges to J*, the unique
fixed point of T’

— Generalized PI and optimistic PI generate
{p*} such that

lim ”Jluk;—J*H = 0, lim ”Jk—J*” =0
k— o0 k— o0

e Analytical Approach: Start with a problem,
match it with an H, invoke the general results.



ASYNCHRONOUS ALGORITHMS

e Motivation for asynchronous algorithms
— Faster convergence
— Parallel and distributed computation
— Simulation-based implementations
e (General framework: Partition X into disjoint

nonempty subsets Xi,...,X,,, and use separate
processor ¢ updating J(x) for x € X,.

e Let J be partitioned as J = (J1, ..., Jm), where
Jy 1s the restriction of J on the set Xy.

e Synchronous algorithm: Processor £ updates J
for the states x € X, at all times ¢,

J N 2) =TI, ..., ) (2), v€Xp, £=1,....,m

e Asynchronous algorithm: Processor ¢ updates
J for the states r € X,y only at a subset of times
RE?

T () = T ™ g () it e Ry,
¢ J(x) if t & Ry

where t — 74, (t) are communication “delays”
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ONE-STATE-AT-A-TIME ITERATIONS

e Important special case: Assume n “states”, a
separate processor for each state, and no delays

e Generate a sequence of states {z0, z!,...}, gen-
erated in some way, possibly by simulation (each
state is generated infinitely often)

e Asynchronous VI: Change any one component
of Jt at time t, the one that corresponds to xt:

1 ) T(JEHD), ..., JE(n))(£) if € = at,
JHE) = {Jt((ﬁ) ) if ¢ = at,
/

e The special case where
{20 21 ...} ={1,...,n,1,....n,1,...}

is the Gauss-Seidel method

e More generally, the components used at time ¢
are delayed by t — 7¢;(?)

e Flexible in terms of timing and “location” of
the iterations

e We can show that J! — J* under assumptions
typically satisfied in DP

1"



ASYNCHRONOUS CONV. THEOREM 1

e Assume that for all £,5 = 1,...,m, the set of
times R, is infinite and lim;— o 72 () = 00

e Proposition: Let T" have a unique fixed point J*,
and assume that there is a sequence of nonempty

subsets {S(k)} C R(X) with S(k+ 1) C S(k) for
all £, and with the following properties:

(1) Synchronous Convergence Condition: Ev-
ery sequence {J*} with Jk € S(k) for each
k, converges pointwise to J*. Moreover, we
have

TJe S(k+1), VJeS(k),k=01,....

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = 51(k) x -+ x Sp(k),

where Sy(k) is a set of real-valued functions
on Xy, {=1,...,m.

Then for every J € S(0), the sequence {J!} gen-
erated by the asynchronous algorithm converges
pointwise to J*.

12



ASYNCHRONOUS CONV. THEOREM I1

e Interpretation of assumptions:

J = (J1,J2)

S2(0) Sk+1) eJ* TJ.A/: :

S1(0)

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

e (Convergence mechanism:

J1 Iterations

AN
\ J = (Ji, J2)
N E—

Sk+1) ey V¥

Jo Iteration

Key: “Independent” component-wise improvement.
An asynchronous component iteration from any J
in S(k) moves into the corresponding component
portion of S(k + 1) permanently!



PRINCIPAL DP APPLICATIONS

e The assumptions of the asynchronous conver-
gence theorem are satisfied in two principal cases:

— When T is a (weighted) sup-norm contrac-
tion.

— When 7' is monotone and the Bellman equa-
tion J = T'J has a unique solution.
e The theorem can be applied also to convergence
of asynchronous optimistic PI for:

— Discounted problems (Section 2.6.2 of the
text).

— SSP problems (Section 3.5 of the text).

e There are variants of the theorem that can be
applied in the presence of special structure.

e Asynchronous convergence ideas also underlie
stochastic VI algorithms like Q-learning.
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