6.231 DYNAMIC PROGRAMMING
LECTURE 15

LECTURE OUTLINE

e Review of basic theory of discounted problems
e Monotonicity and contraction properties
e (Contraction mappings in DP

e Discounted problems: Countable state space
with unbounded costs

e Generalized discounted DP

e An introduction to abstract DP



DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system with arbitrary state space

Lk+1 :f(xk,uk,wk), k:O,l,...

e Cost of a policy m = {uo, p1,.-.}

Jrx(z0) = lim i) {Z Oékg(ivk,/tk(l‘k)awk)}

N — o0 Wi
k=0,1,... k=0

with a < 1, and for some M, we have |g(z, u, w)| <
M for all (z,u,w)

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(xr) = min E{g(w,u,w)—1—aJ(f(x,u,w))},‘v’x

uEU(CE) w

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J.

e For any stationary policy

(T,7)(@) = B {g (. n(w), w) + o] (@ (), )}, Vo



“SHORTHAND” THEORY - A SUMMARY

e Cost function expressions [with Jy(x) = 0]

Jr(x) = Um (Tug Ty, -+ Ty Jo) (@), Ju(z) = lim (T} Jo)(z)
k— o0 k— o0

e Bellman’s equation: J* =T1TJ*, J, =1,J,

e Optimality condition:

p: optimal <==> T, ,J*=TJ*

e Value iteration: For any (bounded) J and all

J*(x) = lim (T*J)(z)

k— 00

e Policy iteration: Given u*,

— Policy evaluation: Find J x by solving
S =T 1k
— Policy improvement: Find pf+1 such that

Tpsrd o =T i



MAJOR PROPERTIES

e NMonotonicity property: For any functions J and
J’ on the state space X such that J(x) < J/(x)
for all x € X, and any p

(TJ)(z) < (TJ')(x), VwelX,

(T.J)(z) < (TuJ)(z), VazclX.

e (ontraction property: For any bounded func-
tions J and J’, and any pu,

mgx’(TJ)(a:) —(TJ")(z)| < &mgx’J(a:) — J/'(x)

max|(T,J)(z)— (TpJ")(z)| < amax|J(z)—J'(z)|.
e Shorthand writing of the contraction property
|TJ-=TJ|| < ol J=T'|, |TpJ=TuJ'|| < afJ=J,

where for any bounded function J, we denote by
|.J|| the sup-norm

| 7] = max].J (z)].



CONTRACTION MAPPINGS

e Given a real vector space Y with a norm || - ||
(see text for definitions).

e A function F' : Y — Y issaid to be a contraction

mapping if for some p € (0,1), we have

|[Fy — Fz|| <plly—z|, foralyzeY

p is called the modulus of contraction of F'.

e Linear case, Y = Rh": Fy = Ay + b is a con-
traction (for some norm | - ||) if and only if all
eigenvalues of A are strictly within the unit circle.

e For m > 1, we say that F' is an m-stage con-
traction if F'™ is a contraction.

e Important example: Let X be a set (e.g., state
space in DP), v : X — R be a positive-valued
function. Let B(X) be the set of all functions
J : X — R such that J(s)/v(s) is bounded over s.

e The weighted sup-norm on B(X):
J
1] = max L

sex wv(s)

e Important special case: The discounted prob-
lem mappings T" and T}, [for v(s) =1, p = a.



A DP-LIKE CONTRACTION MAPPING

o Let X ={1,2,...}, and let F': B(X) — B(X)
be a linear mapping of the form

(FJ)(1 —I—Zazy V1

jeX

where b(7) and a(i, j) are some scalars. Then F is
a contraction with modulus p if

2_jex lali, j)[v(j)
v()

[Think of the special case where a(i,j) are the
transition probs. of a policy].

e Let F': B(X)— B(X) be the mapping

< p, Vi

(FJ)(¢) = min(F,J)(7), Vi

pneM

where M is parameter set, and for each p € M, F,
is a contraction from B(X) to B(X) with modulus
p. Then F'is a contraction with modulus p.



CONTRACTION MAPPING FIXED-POINT TH.

e (Contraction Mapping Fixed-Point Theorem: If
F : B(X)+— B(X) is a contraction with modulus
p € (0,1), then there exists a unique J* € B(X)
such that

J* = FJ*.

Furthermore, if J is any function in B(X), then
{FkJ} converges to J* and we have

e Similar result if F' is an m-stage contraction
mapping.

e This is a special case of a general result for
contraction mappings F' : Y — Y over normed
vector spaces Y that are complete: every sequence
{yr} that is Cauchy (satisfies ||ym — yn| — 0 as
m,n — 00) converges.

e The space B(X) is complete [see the text (Sec-
tion 1.5) for a proof].



GENERAL FORMS OF DISCOUNTED DP

e Monotonicity assumption: If J, J’ € R(X) and
J < J’, then

H(x,u,J) < H(z,u,J), Vee X, ueU(x)

e (ontraction assumption:

— For every J € B(X), the functions 7},J and
T'J belong to B(X).

— For some o € (0,1) and all J,J’ € B(X), H
satisfies

|H (2, u, J)—H(x,u,J")| < amax |J(y)—J'(y),
yeX

for all z € X and u € U(x).

e We can show all the standard analytical and
computational results of discounted DP based on
these two assumptions (with identical proofs!)

e With just the monotonicity assumption (as in
shortest path problem) we can still show various
forms of the basic results under appropriate as-
sumptions (like in the SSP problem)



EXAMPLES

e Discounted problems

H(x,u,J) = E{g(x,u,w) + on(f(a:, u, w))}
e Discounted Semi-Markov Problems

H(z,u,J) = G(z,u) +ng;y

where mg, are “discounted” transition probabili-
ties, defined by the transition distributions

e Deterministic Shortest Path Problems

H(ZU,U,J) — {axu+J(U) ifu;ét,

At ifu=t

where t is the destination

e Minimax Problems

H(CE, b J) - we%%:;( ) [g(a:, u, w)—|—on(f(ZC, U, w))]



RESULTS USING CONTRACTION

e The mappings 7}, and 1" are sup-norm contrac-
tion mappings with modulus « over B(X), and
have unique fixed points in B(X), denoted J,, and
J*, respectively (cf. Bellman’s equation). Proof:
From contraction assumption and fixed point Th.

e For any J € B(X) and p € M,

lim TFJ = J,, lim TkJ = J*

k— 00 k— 00

(cf. convergence of value iteration). Proof: From
contraction property of 7T}, and T

e We have T, J* = T'J* if and only if J, = J*
(cf. optimality condition). Proof: T, J* = TJ*,
then 7, J* = J*, implying J* = J,. Conversely,
if J, =J*, then T, J* =T,J, = J,=J*=TJ*.
e Useful bound for J,: For all J € B(X), p € M
T = J|

1l — «

1T =TI <

Proof: Take limit as & — oo in the relation

i k
|7 T—a| <Y N ThT-TE )| < | Tud =) S et
(=1 (=1

10



RESULTS USING MON. AND CONTRACTION I

e Existence of a nearly optimal policy: For every
€ > 0, there exists yue € M such that

J(x) < J, () < J*(z) + ev(x), VeelX

Proof: For all y € M, we have J* =T J* <T,J*.
By monotonicity, J* < TittJ* < TkJ* for all k.
Taking limit as kK — oo, we obtain J* < J,,.

Also, choose ue € M such that for all x € X,

| Tpe J*=T*|| = ||(Te J*) () = (TT*) (@) || < e(1-a)

From the earlier error bound, we have
Ty > — J*|]

\
J, — J*|| <
| = ) <

: VueM

Combining the preceding two relations,

() = T (@)] _ (1~ a)

v(x) T 1l-a

= €, VeeX
e Optimality of J* over stationary policies:

J*(a;):/fréij\r}lJu(a;), VeelX

Proof: Take € | 0 in the preceding result.

1"



RESULTS USING MON. AND CONTRACTION II

e Nonstationary policies: Consider the set II of
all sequences m = {uo, p1, ...} with up € M for
all k, and define for any J € B(X)

Jr(x) =limsup(Typ Ty, -+ T, J)(x), Ve X,

k— o0
(the choice of J does not matter because of the
contraction property).

e Optimality of J* over nonstationary policies:

J (a:)zglglﬁljﬁ(aﬁ), VeelX

Proof: Use our earlier existence result to show
that for any € > 0, there is pe such that ||J,, —
J*|| < €(1 —a). We have

o .
J*(2) = min J, (@) > min Jx (2)

Also
TFJ < Tuo T Tuk—l*]

Take limit as & — oo to obtain J < J; for all
m € 11.
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