6.231 DYNAMIC PROGRAMMING

LECTURE 15

LECTURE OUTLINE

- Review of basic theory of discounted problems
- Monotonicity and contraction properties
- Contraction mappings in DP
- Discounted problems: Countable state space with unbounded costs
- Generalized discounted DP
- An introduction to abstract DP

DISCOUNTED PROBLEMS/BOUNDED COST

Stationary system with arbitrary state space

$$x_{k+1} = f(x_k, u_k, w_k), \qquad k = 0, 1, \dots$$

• Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$

$$J_{\pi}(x_0) = \lim_{N \to \infty} \mathop{E}_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

with $\alpha < 1$, and for some M, we have $|g(x, u, w)| \le M$ for all (x, u, w)

• Shorthand notation for DP mappings (operate on functions of state to produce other functions)

$$(TJ)(x) = \min_{u \in U(x)} E_{w} \left\{ g(x, u, w) + \alpha J \left(f(x, u, w) \right) \right\}, \ \forall \ x$$

TJ is the optimal cost function for the one-stage problem with stage cost g and terminal cost αJ .

• For any stationary policy μ

$$(T_{\mu}J)(x) = E_{w} \left\{ g\left(x, \mu(x), w\right) + \alpha J\left(f(x, \mu(x), w)\right) \right\}, \ \forall \ x$$

"SHORTHAND" THEORY - A SUMMARY

• Cost function expressions [with $J_0(x) \equiv 0$]

$$J_{\pi}(x) = \lim_{k \to \infty} (T_{\mu_0} T_{\mu_1} \cdots T_{\mu_k} J_0)(x), \ J_{\mu}(x) = \lim_{k \to \infty} (T_{\mu}^k J_0)(x)$$

- Bellman's equation: $J^* = TJ^*, J_{\mu} = T_{\mu}J_{\mu}$
- Optimality condition:

$$\mu$$
: optimal $\langle ==>$ $T_{\mu}J^*=TJ^*$

• Value iteration: For any (bounded) J and all x:

$$J^*(x) = \lim_{k \to \infty} (T^k J)(x)$$

- Policy iteration: Given μ^k ,
 - Policy evaluation: Find $J_{\mu k}$ by solving

$$J_{\mu^k} = T_{\mu^k} J_{\mu^k}$$

- Policy improvement: Find μ^{k+1} such that

$$T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$$

MAJOR PROPERTIES

• Monotonicity property: For any functions J and J' on the state space X such that $J(x) \leq J'(x)$ for all $x \in X$, and any μ

$$(TJ)(x) \le (TJ')(x), \quad \forall \ x \in X,$$

 $(T_{\mu}J)(x) \le (T_{\mu}J')(x), \quad \forall \ x \in X.$

• Contraction property: For any bounded functions J and J', and any μ ,

$$\max_{x} \left| (TJ)(x) - (TJ')(x) \right| \le \alpha \max_{x} \left| J(x) - J'(x) \right|,$$

$$\max_{x} \left| (T_{\mu}J)(x) - (T_{\mu}J')(x) \right| \le \alpha \max_{x} \left| J(x) - J'(x) \right|.$$

• Shorthand writing of the contraction property

$$||TJ-TJ'|| \le \alpha ||J-J'||, ||T_{\mu}J-T_{\mu}J'|| \le \alpha ||J-J'||,$$

where for any bounded function J, we denote by ||J|| the sup-norm

$$||J|| = \max_{x \in X} |J(x)|.$$

CONTRACTION MAPPINGS

- Given a real vector space Y with a norm $\|\cdot\|$ (see text for definitions).
- A function $F: Y \mapsto Y$ is said to be a *contraction* mapping if for some $\rho \in (0,1)$, we have

$$||Fy - Fz|| \le \rho ||y - z||,$$
 for all $y, z \in Y$.

 ρ is called the modulus of contraction of F.

- Linear case, $Y = \Re^n$: Fy = Ay + b is a contraction (for some norm $\|\cdot\|$) if and only if all eigenvalues of A are strictly within the unit circle.
- For m > 1, we say that F is an m-stage contraction if F^m is a contraction.
- Important example: Let X be a set (e.g., state space in DP), $v: X \mapsto \Re$ be a positive-valued function. Let B(X) be the set of all functions $J: X \mapsto \Re$ such that J(s)/v(s) is bounded over s.
- The weighted sup-norm on B(X):

$$||J|| = \max_{s \in X} \frac{|J(s)|}{v(s)}.$$

• Important special case: The discounted problem mappings T and T_{μ} [for $v(s) \equiv 1, \rho = \alpha$].

A DP-LIKE CONTRACTION MAPPING

• Let $X = \{1, 2, ...\}$, and let $F : B(X) \mapsto B(X)$ be a linear mapping of the form

$$(FJ)(i) = b(i) + \sum_{j \in X} a(i,j) J(j), \qquad \forall i$$

where b(i) and a(i,j) are some scalars. Then F is a contraction with modulus ρ if

$$\frac{\sum_{j \in X} |a(i,j)| \, v(j)}{v(i)} \le \rho, \qquad \forall i$$

[Think of the special case where a(i, j) are the transition probs. of a policy].

• Let $F: B(X) \mapsto B(X)$ be the mapping

$$(FJ)(i) = \min_{\mu \in M} (F_{\mu}J)(i), \quad \forall i$$

where M is parameter set, and for each $\mu \in M$, F_{μ} is a contraction from B(X) to B(X) with modulus ρ . Then F is a contraction with modulus ρ .

CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: If $F: B(X) \mapsto B(X)$ is a contraction with modulus $\rho \in (0,1)$, then there exists a unique $J^* \in B(X)$ such that

$$J^* = FJ^*$$
.

Furthermore, if J is any function in B(X), then $\{F^kJ\}$ converges to J^* and we have

$$||F^k J - J^*|| \le \rho^k ||J - J^*||, \qquad k = 1, 2, \dots$$

- Similar result if F is an m-stage contraction mapping.
- This is a special case of a general result for contraction mappings $F: Y \mapsto Y$ over normed vector spaces Y that are complete: every sequence $\{y_k\}$ that is Cauchy (satisfies $||y_m y_n|| \to 0$ as $m, n \to \infty$) converges.
- The space B(X) is complete [see the text (Section 1.5) for a proof].

GENERAL FORMS OF DISCOUNTED DP

• Monotonicity assumption: If $J, J' \in R(X)$ and $J \leq J'$, then

$$H(x, u, J) \le H(x, u, J'), \quad \forall x \in X, u \in U(x)$$

- Contraction assumption:
 - For every $J \in B(X)$, the functions $T_{\mu}J$ and TJ belong to B(X).
 - For some $\alpha \in (0,1)$ and all $J, J' \in B(X)$, H satisfies

$$\left|H(x,u,J) - H(x,u,J')\right| \le \alpha \max_{y \in X} \left|J(y) - J'(y)\right|$$

for all $x \in X$ and $u \in U(x)$.

- We can show all the standard analytical and computational results of discounted DP based on these two assumptions (with identical proofs!)
- With just the monotonicity assumption (as in shortest path problem) we can still show various forms of the basic results under appropriate assumptions (like in the SSP problem)

EXAMPLES

• Discounted problems

$$H(x, u, J) = E\{g(x, u, w) + \alpha J(f(x, u, w))\}$$

• Discounted Semi-Markov Problems

$$H(x, u, J) = G(x, u) + \sum_{y=1}^{n} m_{xy}(u)J(y)$$

where m_{xy} are "discounted" transition probabilities, defined by the transition distributions

• Deterministic Shortest Path Problems

$$H(x, u, J) = \begin{cases} a_{xu} + J(u) & \text{if } u \neq t, \\ a_{xt} & \text{if } u = t \end{cases}$$

where t is the destination

• Minimax Problems

$$H(x,u,J) = \max_{w \in W(x,u)} \left[g(x,u,w) + \alpha J \left(f(x,u,w) \right) \right]$$

RESULTS USING CONTRACTION

- The mappings T_{μ} and T are sup-norm contraction mappings with modulus α over B(X), and have unique fixed points in B(X), denoted J_{μ} and J^* , respectively (cf. Bellman's equation). Proof: From contraction assumption and fixed point Th.
- For any $J \in B(X)$ and $\mu \in \mathcal{M}$,

$$\lim_{k \to \infty} T_{\mu}^{k} J = J_{\mu}, \qquad \lim_{k \to \infty} T^{k} J = J^{*}$$

(cf. convergence of value iteration). Proof: From contraction property of T_{μ} and T.

- We have $T_{\mu}J^* = TJ^*$ if and only if $J_{\mu} = J^*$ (cf. optimality condition). Proof: $T_{\mu}J^* = TJ^*$, then $T_{\mu}J^* = J^*$, implying $J^* = J_{\mu}$. Conversely, if $J_{\mu} = J^*$, then $T_{\mu}J^* = T_{\mu}J_{\mu} = J_{\mu} = J^* = TJ^*$.
- Useful bound for J_{μ} : For all $J \in B(X)$, $\mu \in \mathcal{M}$

$$||J_{\mu} - J|| \le \frac{||T_{\mu}J - J||}{1 - \alpha}$$

Proof: Take limit as $k \to \infty$ in the relation

$$||T_{\mu}^{k}J - J|| \leq \sum_{\ell=1}^{k} ||T_{\mu}^{\ell}J - T_{\mu}^{\ell-1}J|| \leq ||T_{\mu}J - J|| \sum_{\ell=1}^{k} \alpha^{\ell-1}$$

RESULTS USING MON. AND CONTRACTION I

• Existence of a nearly optimal policy: For every $\epsilon > 0$, there exists $\mu_{\epsilon} \in \mathcal{M}$ such that

$$J^*(x) \le J_{\mu_{\epsilon}}(x) \le J^*(x) + \epsilon v(x), \quad \forall \ x \in X$$

Proof: For all $\mu \in \mathcal{M}$, we have $J^* = TJ^* \leq T_{\mu}J^*$. By monotonicity, $J^* \leq T_{\mu}^{k+1}J^* \leq T_{\mu}^kJ^*$ for all k. Taking limit as $k \to \infty$, we obtain $J^* \leq J_{\mu}$.

Also, choose $\mu_{\epsilon} \in \mathcal{M}$ such that for all $x \in X$,

$$||T_{\mu_{\epsilon}}J^* - J^*|| = ||(T_{\mu_{\epsilon}}J^*)(x) - (TJ^*)(x)|| \le \epsilon(1-\alpha)$$

From the earlier error bound, we have

$$||J_{\mu} - J^*|| \le \frac{||T_{\mu}J^* - J^*||}{1 - \alpha}, \quad \forall \ \mu \in \mathcal{M}$$

Combining the preceding two relations,

$$\frac{\left|J_{\mu_{\epsilon}}(x) - J^{*}(x)\right|}{v(x)} \le \frac{\epsilon(1-\alpha)}{1-\alpha} = \epsilon, \quad \forall \ x \in X$$

• Optimality of J^* over stationary policies:

$$J^*(x) = \min_{\mu \in \mathcal{M}} J_{\mu}(x), \qquad \forall \ x \in X$$

Proof: Take $\epsilon \downarrow 0$ in the preceding result.

RESULTS USING MON. AND CONTRACTION II

• Nonstationary policies: Consider the set Π of all sequences $\pi = \{\mu_0, \mu_1, \ldots\}$ with $\mu_k \in \mathcal{M}$ for all k, and define for any $J \in B(X)$

$$J_{\pi}(x) = \limsup_{k \to \infty} (T_{\mu_0} T_{\mu_1} \cdots T_{\mu_k} J)(x), \qquad \forall x \in X,$$

(the choice of J does not matter because of the contraction property).

• Optimality of J^* over nonstationary policies:

$$J^*(x) = \min_{\pi \in \Pi} J_{\pi}(x), \qquad \forall \ x \in X$$

Proof: Use our earlier existence result to show that for any $\epsilon > 0$, there is μ_{ϵ} such that $||J_{\mu_{\epsilon}} - J^*|| \le \epsilon (1 - \alpha)$. We have

$$J^*(x) = \min_{\mu \in \mathcal{M}} J_{\mu}(x) \ge \min_{\pi \in \Pi} J_{\pi}(x)$$

Also

$$T^k J \leq T_{\mu_0} \cdots T_{\mu_{k-1}} J$$

Take limit as $k \to \infty$ to obtain $J \leq J_{\pi}$ for all $\pi \in \Pi$.

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.