6.231 DYNAMIC PROGRAMMING
LECTURE 14

LECTURE OUTLINE

e We start a ten-lecture sequence on advanced
infinite horizon DP and approximation methods

e We allow infinite state space, so the stochastic
shortest path framework cannot be used any more

e Results are rigorous assuming a finite or count-
able disturbance space

— This includes deterministic problems with
arbitrary state space, and countable state
Markov chains

— Otherwise the mathematics of measure the-
ory make analysis difficult, although the fi-
nal results are essentially the same as for fi-
nite disturbance space

e We use Vol. II of the textbook, starting with
discounted problems (Ch. 1)

e The central mathematical structure is that the
DP mapping is a contraction mapping (instead of
existence of a termination state) 1



DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system with arbitrary state space

Lk+1 :f(a:k,uk,wk), k:O,l,...

e Cost of a policy m = {uo, 1, ...}

Jrx(z0) = lim b {Z &kg(ﬁk,uk(%)awk)}

N — o0 W[
k=0,1,... k=0

with a < 1, and for some M, we have

g(z, u,w)| <M,V (2, u,w)

e We have

‘JW(:UO)‘SM—l—aM—Fa?M—F---: A A

1l — «

e The “tail” of the cost Jr(xo) diminishes to 0
e The limit defining J(xo) exists



WE ADOPT “SHORTHAND” NOTATION

e Compact pointwise notation for functions:

— If for two functions J and J’ we have J(x) =
J'(x) for all z, we write J = J'

— If for two functions J and J’ we have J(z) <
J'(x) for all z, we write J < J’

— For a sequence {Ji} with Ji(x) — J(x) for
all x, we write Jp — J; also J* = min,; J,

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = uren(}?x)g {g(w,u,w) - on(f(x,u,w))} , Vo

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J.

e For any stationary policy u

(1,7)(@) = B {g(, n(w), w) + o] (@ (), )}, Vo

e For finite-state problems:

1yJ =g, +aP,J, T'J=minT,J
i



“SHORTHAND” COMPOSITION NOTATION

e Composition notation: T2.J is defined by (72J)(z) =
(T(TJ))(x) for all x (similar for T*.J)

e For any policy m = {uo, p1, - . .} and function J:

— T,,,J is the cost function of 7 for the one-
stage problem with terminal cost function

aJ

— TyoTyu,J (i-e., T,, applied to T}, J) is the
cost function of 7w for the two-stage problem
with terminal cost a2J

— TyoTyy ---Thupyn_J is the cost function of =

for the N-stage problem with terminal cost
alNJ

e For any function J:

— T'J is the optimal cost tunction of the one-
stage problem with terminal cost function
aJ

— T2J (i.e., T applied to T'J) is the optimal
cost function of the two-stage problem with
terminal cost a2J

— TN J is the optimal cost function of the /N-
stage problem with terminal cost afV.J



“SHORTHAND” THEORY - A SUMMARY

e Cost function expressions [with Jo(x) = 0]

Jr(x) = lim (T Ty, -+ Ty Jo) (@), Ju(z) = lim (T, Jo)(x)
k— o0 k— o0

e DBellman’s equation: J* =TJ*, J, =1,J,

e Optimality condition:

p: optimal <==> T, J*=TJ*

e Value iteration: For any (bounded) J and all

J*(x) = lim (T*J)(z)

k— 00

e Policy iteration: Given uk:

— Policy evaluation: Find J x by solving
S =T 1k
— Policy improvement: Find pf+1 such that

Tﬂk+1 Juk = TJMk



SOME KEY PROPERTIES

e NMonotonicity property: For any functions J and
J’ such that J(x) < J/(x) for all x, and any p

(TJ)(x) < (TJ")(x), V x,
(Tpd)(z) < (Tpd')(z), V.

Also

JL<TJ = TkJTk+1] vV k

e Constant Shift property: For any J, any scalar
r, and any u

(T(J +re))(z) = (TJT)(z) + ar, V x,

(Tu(J +re))(z) = (TuJ)(z) + ar, V x,

where e is the unit function [e(z) = 1] (holds for
most DP models).

e A third important property that holds for some
(but not all) DP models is that T" and T}, are con-
traction mappings (more on this later).



CONVERGENCE OF VALUE ITERATION

o If J() — 0,
J*(z) = lim (TN Jy)(x), for all x
N —o00

Proof: For any initial state xp, and policy m =
{,UO, M1, - - '}7

Jr(xo) = E < Zakg(xk,uk(xk),wk)}

k=0

(N1
= B Z @kg(xkaﬂk(xk)awk)}

\ k=0
+ L { > Oékg(xkauk(xk),wk)}
k=N
from which
N T N T
Ta(@0) = 5—— < (Tug -+ Trup_y Jo) (20) < T (w0)+

l -« l—a’

where M > |g(x,u,w)|. Take the min over 7 of
both sides. Q.E.D.



BELLMAN’S EQUATION

e The optimal cost function J* satisfies Bellman’s
Eq., i.e. J*=1TJ*.

Proof: For all x and N,
alN M alN M

T = (I o)(x) = (@) +

J* (x) —

where Jo(x) =0 and M > |g(x, u, w)].

e Apply T to this relation and use Monotonicity
and Constant Shift,

aN+I M

1l — «

(TJ*)(z) — < (TH+1Jo)(x)

aN+1IM

1l — «

< (T'J*)(z) +

e Take limit as N — oo and use the fact

lim (TN+1.Jo)(z) = J*(x)

N — o0

to obtain J* =TJ*. Q.E.D.



THE CONTRACTION PROPERTY

e (ontraction property: For any bounded func-
tions J and J’, and any pu,

mgx’(TJ)(a:) —(TJ)(z)| < &mgx’J(a:) — J/'(x)

max|(T,J)(z)— (TpJ")(z)| < amax|J(z)—J' (z)|.
Proof: Denote ¢ = maxgegs|J(x) — J'(x)|. Then
J(x)—c< J(x) < J(x)+c, vV x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ)(z)—ac < (TJ)(x) < (TJ)(x)+ac, V&
Hence
(TT)(z) — (TJ")(z)| < ac, vV x.

Similar for 7,,. Q.E.D.



IMPLICATIONS OF CONTRACTION PROPERTY

e We can strengthen our earlier result:

e DBellman’s equation J = T'J has a unique solu-
tion, namely J*, and for any bounded J, we have

lim (TkJ)(x) = J*(x), Vx

k— o0

Proot: Use
mgx‘(T’fJ)(a:) — J*(z)| = mgx‘(TkJ)(a:) — (TkJ*)(z)]
< ak man’J(:c) — J*(z)]

e Special Case: For each stationary p, J, is the
unique solution of J =1,,J and

lim (TFJ)(x) = J,u(x), V x,

k— o0

for any bounded J.

e Convergence rate: For all &,

mgx‘(T’fJ)(a:) — J*(z)] < ok man’J(:c) — J*(z)]

10



NEC. AND SUFFICIENT OPT. CONDITION

e A stationary policy p is optimal if and only if
w(x) attains the minimum in Bellman’s equation
for each z; i.e.,

TJ* =T, J*.

Proof: It T'J* =T,,J*, then using Bellman’s equa-
tion (J* = TJ*), we have

J* =T, J*,

so by uniqueness of the fixed point of 7},, we obtain
J* = J,; l.e., i 1s optimal.

e Conversely, if the stationary policy u is optimal,
we have J* = J,, so

J* =T, J*.

Combining this with Bellman’s equation (J* =
TJ*), we obtain T'J* =1T,J*. Q.E.D.



COMPUTATIONAL METHODS - AN OVERVIEW

e Typically must work with a finite-state system.
Possibly an approximation of the original system.

e Value iteration and variants

— Gauss-Seidel and asynchronous versions

e Policy iteration and variants

— Combination with (possibly asynchronous)
value iteration

— “Optimistic” policy iteration

e Linear programming

n
maximize Z J(7)
i=1

mn
subject to J(i) < g(i,u) + o Y pi;(w)J(5), ¥ (i,u)
j=1
e Versions with subspace approximation: Use in
place of J(i) a low-dim. basis function representa-
tion, with state features ¢, (¢2), m=1,...,s
S
J(i,7) =Y rmém(i)

m=1

and modify the basic methods appropriately. .



USING Q-FACTORS I

e Let the states be 1 = 1,...,n. We can write
Bellman’s equation as

J*(i) = * =1,....n,
(2) urenl}r(l)Q (tu) n

where
= > pii(u) (900, u.5) + aJ* (7))

for all (i, u)
o (Q*(i,u) is called the optimal Q-factor of (i, u)

e (-factors have optimal cost interpretation in
an “augmented” problem whose states are ¢ and
(4,u), u € U(i) - the optimal cost vector is (J*, Q*)

e The Bellman Eq. is J* =T J*, Q* = FQ* where

(FQ*)( me ( i,u,7) +a min Q*(j,v)

veU(j)

e It has a unique solution.

)



USING Q-FACTORS 11

e We can equivalently write the VI method as
Jrk+1(2) = min Qp41 (%, u), i=1,...,n,
ueU (3)

where Q11 is generated for all ¢ and u € U(i) by

Qunlivn) = Y pis(w) (966 ud) +a min Qo))

vel(j)

or Jk_|_1 = TJk, Qk—i—l = FQk

e FEqual amount of computation ... just more
storage.

e Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

p*(4) Zugl(}r(li)Q (i, u)
e Once Q*(i,u) are known, the model [¢g and

pi;j(u)] is not needed. Model-free operation.

e Stochastic/sampling methods can be used to
calculate (approximations of) Q*(i,u) [not J*(7)]
with a simulator of the system.
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