
6.231 DYNAMIC PROGRAMMING

LECTURE 14

LECTURE OUTLINE

• We start a ten-lecture sequence on advanced
infinite horizon DP and approximation methods

• We allow infinite state space, so the stochastic
shortest path framework cannot be used any more

• Results are rigorous assuming a finite or count-
able disturbance space

− This includes deterministic problems with
arbitrary state space, and countable state
Markov chains

− Otherwise the mathematics of measure the-
ory make analysis difficult, although the fi-
nal results are essentially the same as for fi-
nite disturbance space

• We use Vol. II of the textbook, starting with
discounted problems (Ch. 1)

• The central mathematical structure is that the
DP mapping is a contraction mapping (instead of
existence of a termination state) 1



DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk

k=0,1,...

{

k

∑

=0

}

( )

with α < 1, and for some M , we have

|g(x, u, w)| ≤ M, ∀ (x, u, w)

• We have

∣

∣Jπ(x0)
∣ M
∣ ≤ M +αM +α2M + · · · = ,

1− α
∀ x0

• The “tail” of the cost Jπ(x0) diminishes to 0

• The limit defining Jπ(x0) exists
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WE ADOPT “SHORTHAND” NOTATION

• Compact pointwise notation for functions:

− If for two functions J and J ′ we have J(x) =
J ′(x) for all x, we write J = J ′

− If for two functions J and J ′ we have J(x) ≤
J ′(x) for all x, we write J ≤ J ′

− For a sequence {Jk} with Jk(x) → J(x) for
all x, we write Jk → J ; also J∗ = minπ Jπ

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min E
{

g(x, u, w) + αJ f(x, u, w) , ∀ x
u∈U(x) w

( )}

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E
{

g
(

x, µ(x), w + αJ f(x, µ(x), w) , ∀ x
w

• For finite-state problem

)

s:

( )}

TµJ = gµ + αPµJ, TJ = minTµJ
µ
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“SHORTHAND” COMPOSITION NOTATION

• Composition notation: T 2J is defined by (T 2J)(x) =
(T (TJ))(x) for all x (similar for T kJ)

• For any policy π = {µ0, µ1, . . .} and function J :

− Tµ0J is the cost function of π for the one-
stage problem with terminal cost function
αJ

− Tµ0Tµ1J (i.e., Tµ0 applied to Tµ1J) is the
cost function of π for the two-stage problem
with terminal cost α2J

− Tµ0Tµ1 · · ·TµN−1J is the cost function of π
for the N -stage problem with terminal cost
αNJ

• For any function J :

− TJ is the optimal cost function of the one-
stage problem with terminal cost function
αJ

− T 2J (i.e., T applied to TJ) is the optimal
cost function of the two-stage problem with
terminal cost α2J

− TNJ is the optimal cost function of the N -
stage problem with terminal cost αNJ
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“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions [with J0(x) ≡ 0]

Jπ(x) = lim (Tµ0
Tµ1

· · · kTµk
J0)(x), Jµ(x) = lim (TµJ0)(x)

k→∞ k→∞

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Value iteration: For any (bounded) J and all
x,

J∗(x) = lim (T kJ)(x)
k→∞

• Policy iteration: Given µk:

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk
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SOME KEY PROPERTIES

• Monotonicity property: For any functions J and
J ′ such that J(x) ≤ J ′(x) for all x, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x.

Also

J ≤ TJ ⇒ T kJ ≤ T k+1J, ∀ k

• Constant Shift property: For any J , any scalar
r, and any µ

(

T (J + re)
)

(x) = (TJ)(x) + αr, ∀ x,

(

Tµ(J + re)
)

(x) = (TµJ)(x) + αr, ∀ x,

where e is the unit function [e(x) ≡ 1] (holds for
most DP models).

• A third important property that holds for some
(but not all) DP models is that T and Tµ are con-
traction mappings (more on this later).
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CONVERGENCE OF VALUE ITERATION

• If J0 ≡ 0,

J∗(x) = lim (TNJ0)(x), for all x
N→∞

Proof: For any initial state x0, and policy π =
{µ0, µ1, . . .},

∞

Jπ(x0) = E

{

∑

αkg
(

xk, µk(xk), wk

k=0

}

)

= E

{

N−1
∑

αkg
(

xk, µk(xk), wk

k=0

}

)

+ E

{

∞
∑

αkg
(

xk, µk(xk), wk

k=N

}

)

from which

αNM
Jπ(x0)−

1− α
≤ (Tµ0 · · ·TµN−1

J0)(x0) ≤ Jπ(x0)+
αNM

,
1− α

where M ≥ |g(x, u, w)|. Take the min over π of
both sides. Q.E.D.
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BELLMAN’S EQUATION

• The optimal cost function J∗ satisfies Bellman’s
Eq., i.e. J∗ = TJ∗.

Proof: For all x and N ,

αNM
J∗(x)−

1− α
≤ (TNJ0)(x) ≤ J∗(x) +

αNM
,

1− α

where J0(x) ≡ 0 and M ≥ |g(x, u, w)|.
• Apply T to this relation and use Monotonicity
and Constant Shift,

αN+1M
(TJ∗)(x)− (

1− α
≤ TN+1J0)(x)

αN+1M≤ (TJ∗)(x) +
1− α

• Take limit as N → ∞ and use the fact

lim (TN+1J0)(x) = J∗(x)
N→∞

to obtain J∗ = TJ∗. Q.E.D.
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THE CONTRACTION PROPERTY

• Contraction property: For any bounded func-
tions J and J ′, and any µ,

max
∣

∣(TJ)(x)− (TJ ′)(x)
x

∣

≤ αmax
x

∣

J(x)− J ′(x)
∣

,

max
∣

∣(TµJ)(x) ′

∣ ∣

x
−(TµJ )(x

∣

) ≤ αmax J(x) J ′(x) .
x

−

Proof: Denote c = maxx∈

∣

∣

S J(x)

∣

−

∣

J ′(x) . Then

∣

∣

J(x)

∣

∣

− c ≤ J ′(x) ≤ J(x) + c,

∣

∀

∣

x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ)(x)−αc ≤ (TJ ′)(x) ≤ (TJ)(x)+αc, ∀ x

Hence

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ αc, ∀ x.

Similar for Tµ. Q.E.D.
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IMPLICATIONS OF CONTRACTION PROPERTY

• We can strengthen our earlier result:

• Bellman’s equation J = TJ has a unique solu-
tion, namely J∗, and for any bounded J , we have

lim (T kJ)(x) = J∗(x),
k→∞

∀ x

Proof: Use

max
∣

∣(T kJ)(x)− J∗(x)
∣

∣ = max
∣

∣(T kJ)(x) T
x

− ( kJ∗)(x)
x

J

∣

≤ αk max
x

∣

(x)− J∗(x)

∣

∣

• Special Case: For each stationa

∣

ry µ, J

∣

µ is the
unique solution of J = TµJ and

lim (T k
µJ)(x) = Jµ(x),

k→∞
∀ x,

for any bounded J .

• Convergence rate: For all k,

max
∣

∣(T kJ)(x)− J∗(x)
x

∣

∣ ≤ αk max
x

∣

∣J(x)− J∗(x)
∣

∣
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NEC. AND SUFFICIENT OPT. CONDITION

• A stationary policy µ is optimal if and only if
µ(x) attains the minimum in Bellman’s equation
for each x; i.e.,

TJ∗ = TµJ∗.

Proof: If TJ∗ = TµJ∗, then using Bellman’s equa-
tion (J∗ = TJ∗), we have

J∗ = T J∗
µ ,

so by uniqueness of the fixed point of Tµ, we obtain
J∗ = Jµ; i.e., µ is optimal.

• Conversely, if the stationary policy µ is optimal,
we have J∗ = Jµ, so

J∗ = TµJ∗.

Combining this with Bellman’s equation (J∗ =
TJ∗), we obtain TJ∗ = TµJ∗. Q.E.D.
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COMPUTATIONAL METHODS - AN OVERVIEW

• Typically must work with a finite-state system.
Possibly an approximation of the original system.

• Value iteration and variants

− Gauss-Seidel and asynchronous versions

• Policy iteration and variants

− Combination with (possibly asynchronous)
value iteration

− “Optimistic” policy iteration

• Linear programming

n

maximize
∑

J(i)
i=1

n

subject to J(i) ≤ g(i, u) + α
∑

pij(u)J(j),
j=1

∀ (i, u)

• Versions with subspace approximation: Use in
place of J(i) a low-dim. basis function representa-
tion, with state features φm(i), m = 1, . . . , s

s

J̃(i, r) = rmφm(i)
m=1

and modify the basic m

∑

ethods appropriately. 12



USING Q-FACTORS I

• Let the states be i = 1, . . . , n. We can write
Bellman’s equation as

J∗(i) = min Q∗(i, u) i = 1, . . . , n,
u∈U(i)

where

n

Q∗(i, u) =
∑

pij(u)
(

g(i, u, j) + αJ∗(j)
j=1

)

for all (i, u)

• Q∗(i, u) is called the optimal Q-factor of (i, u)

• Q-factors have optimal cost interpretation in
an “augmented” problem whose states are i and
(i, u), u ∈ U(i) - the optimal cost vector is (J∗, Q∗)

• The Bellman Eq. is J∗ = TJ∗, Q∗ = FQ∗ where

n

(FQ∗)(i, u) =
∑

pij(u)

(

g(i, u, j) + α min Q∗(j, v)
v∈U(j)

j=1

)

• It has a unique solution.
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USING Q-FACTORS II

• We can equivalently write the VI method as

Jk+1(i) = min Qk+1(i, u), i = 1, . . . , n,
u∈U(i)

where Qk+1 is generated for all i and u ∈ U(i) by

n

Qk+1(i, u) =
∑

pij(u)

(

g(i, u, j) + α min Qk(j, v)
v∈U(j)

j=1

)

or Jk+1 = TJk, Qk+1 = FQk.

• Equal amount of computation ... just more
storage.

• Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

µ∗(i) = min Q∗(i, u)
u∈U(i)

• Once Q∗(i, u) are known, the model [g and
pij(u)] is not needed. Model-free operation.

• Stochastic/sampling methods can be used to
calculate (approximations of) Q∗(i, u) [not J∗(i)]
with a simulator of the system.
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