
6.231 DYNAMIC PROGRAMMING

LECTURE 13

LECTURE OUTLINE

• Control of continuous-time Markov chains –
Semi-Markov problems

• Problem formulation – Equivalence to discrete-
time problems

• Discounted problems

• Average cost problems
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CONTINUOUS-TIME MARKOV CHAINS

• Stationary system with finite number of states
and controls

• State transitions occur at discrete times

• Control applied at these discrete times and stays
constant between transitions

• Time between transitions is random

• Cost accumulates in continuous time (may also
be incurred at the time of transition)

• Example: Admission control in a system with
restricted capacity (e.g., a communication link)

− Customer arrivals: a Poisson process

− Customers entering the system, depart after
exponentially distributed time

− Upon arrival we must decide whether to ad-
mit or to block a customer

− There is a cost for blocking a customer

− For each customer that is in the system, there
is a customer-dependent reward per unit time

− Minimize time-discounted or average cost
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PROBLEM FORMULATION

• x(t) and u(t): State and control at time t

• tk: Time of kth transition (t0 = 0)

• xk = x(tk); x(t) = xk for tk ≤ t < tk+1.

• uk = u(tk); u(t) = uk for tk ≤ t < tk+1.

• No transition probabilities; instead transition
distributions (quantify the uncertainty about both
transition time and next state)

Qij(τ, u) = P{tk+1−tk ≤ τ, xk+1 = j | xk = i, uk = u}

• Two important formulas:

(1) Transition probabilities are specified by

pij(u) = P{xk+1 = j | xk = i, uk = u} = lim Qij(τ, u)
τ→∞

(2) The Cumulative Distribution Function (CDF)
of τ given i, j, u is (assuming pij(u) > 0)

Qij(τ, u)
P{tk+1−tk ≤ τ | xk = i, xk+1 = j, uk = u} =

pij(u)

Thus, Qij(τ, u) can be viewed as a “scaled CDF”

3



EXPONENTIAL TRANSITION DISTRIBUTIONS

• Important example of transition distributions:

Qij(τ, u) = pij(u)
(

1− e−νi(u)τ
)

,

where pij(u) are transition probabilities, and νi(u)
is called the transition rate at state i.

• Interpretation: If the system is in state i and
control u is applied

− the next state will be j with probability pij(u)

− the time between the transition to state i
and the transition to the next state j is ex-
ponentially distributed with parameter νi(u)
(independently of j):

P{transition time interval > τ | i, u} = e−νi(u)τ

• The exponential distribution is memoryless.
This implies that for a given policy, the system
is a continuous-time Markov chain (the future de-
pends on the past through the current state).

• Without the memoryless property, the Markov
property holds only at the times of transition.

4



COST STRUCTURES

• There is cost g(i, u) per unit time, i.e.

g(i, u)dt = the cost incurred in time dt

• There may be an extra “instantaneous” cost
ĝ(i, u) at the time of a transition (let’s ignore this
for the moment)

• Total discounted cost of π = µ0, µ1, . . . start-
ing from state i (with discount

{
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• We will see that both problems have equivalent
discrete-time versions.
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DISCOUNTED CASE - COST CALCULATION

• For a policy π = {µ0, µ1, . . .}, write

Jπ(i) = E{1st transition cost}+E{e−βτJπ1(j) | i, µ0(i)}

τ
where E{1st transition cost} = E

{∫

e−βtg(i, µ0(i))dt0
and Jπ1(j) is the cost-to-go of π1 = {µ1, µ2, . . .}

}

• We calculate the two costs in the RHS. The
E{1st transition cost}, if u is applied at state i, is

G(i, u) = Ej

{

Eτ{1st transition cost | j}

n

}

∑

∞ τ
dQ−βt ij(τ, u)

= pij(u) e g(i, u)dt
0 0j=1

∫ (∫ )

pij(u)

n

= g(i, u)
∑

j=1

∫ ∞
1− e−βτ

0
β

dQij(τ, u)

• Thus the E{1st transition cost} is

n ∞
1− e−βτ

G
(

i, µ0(i)
)

= g
(

i, µ0(i)
)

∑

j=1

∫

0
β

dQij

(

τ, µ0(i)
)

(The summation term can be viewed as a “dis-
counted length of the transition interval t1 − t0”.)
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COST CALCULATION (CONTINUED)

• Also the expected (discounted) cost from the
next state j is

E
{

e−βτJπ1(j) | i, µ0(i)

= E
{

E{e−βτ
j | i, µ0(

}

i), j}Jπ1(j)
n

| i, µ0(i)

∑

(∫ ∞ dQij(τ, µ0(i))
= p µ0(i ) e−βτ

ij( )

}

0j=1

J
pij(µ0(i))

)

π1(j)

n

=
∑

mij

j=1

(

µ0(i)
)

Jπ1(j)

where mij(u) is given by

∞ ∞

mij(u) =

∫

−βτe dQij(τ, u)

(

<

∫

dQij(τ, u) = pij(u)
0 0

and can be viewed as the “effective discount fac-

)

tor” [the analog of αpij(u) in discrete-time case].

• So Jπ(i) can be written as
n

Jπ(i) = G
(

i, µ0(i)
)

+
∑

mij

(

µ0(i)
)

Jπ1(j)
j=1

i.e., the (continuous-time discounted) cost of 1st
period, plus the (continuous-time discounted) cost-
to-go from the next state.
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COST CALCULATION (CONTINUED)
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period, plus the (continuous-time discounted) cost-
to-go from the next state.
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EQUIVALENCE TO AN SSP

• Similar to the discrete-time case, introduce an
“equivalent” stochastic shortest path problem with
an artificial termination state t

• Under control u, from state i the system moves
to state j with probability mij(u) and to the ter-

n
mination state t with probability 1−

∑

j=1 mij(u)

• Bellman’s equation: For i = 1, . . . , n,



n

J∗(i) = min G(i, u) +
u∈U(i)

∑

m ∗
ij(u)J (j)

j=1





• Analogs of value iteration, policy iteration, and
linear programming.

• If in addition to the cost per unit time g, there
is an extra (instantaneous) one-stage cost ĝ(i, u),
Bellman’s equation becomes



n

J∗(i) = min ĝ(i, u) +G(i, u) +
u∈U(i)

∑

mij(u)J∗(j)
j=1




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MANUFACTURER’S EXAMPLE REVISITED

• A manufacturer receives orders with interarrival
times uniformly distributed in [0, τmax].

• He may process all unfilled orders at costK > 0,
or process none. The cost per unit time of an
unfilled order is c. Max number of unfilled orders
is n.

• The nonzero transition distributions are

τ
Qi1(τ,Fill) = Qi(i+1)(τ,Not Fill) = min

[

1,
τmax

]

• The one-stage expected cost G is

G(i,Fill) = 0, G(i,Not Fill) = γ c i,

where

n

γ =
∑ τ

j 1

∫ ∞ 1− e−β

0=
β

dQij(τ, u) =

∫ τmax

0

1− e−βτ

dτ
βτmax

• There is an “instantaneous” cost

ĝ(i,Fill) = K, ĝ(i,Not Fill) = 0
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MANUFACTURER’S EXAMPLE CONTINUED

• The “effective discount factors” mij(u) in Bell-
man’s Equation are

mi1(Fill) = mi(i+1)(Not Fill) = α,

where

α =

∫ ∞ τmax τ

e−βτ e−β

dQij(τ, u) =
0

∫

0
τmax

dτ =
1− e−βτmax

βτmax

• Bellman’s equation has the form

J∗(i) = min
[

K+αJ∗(1), γci+αJ∗(i+1)
]

, i = 1, 2, . . .

• As in the discrete-time case, we can conclude
that there exists an optimal threshold i∗:

fill the orders <==> their number i exceeds i∗
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AVERAGE COST

• Minimize limN→∞
1

E{tN}E
{

∫ tN
0

g
(

x(t), u(t)
)

dt
}

assuming there is a special state that is “recurrent
under all policies”

• Total expected cost of a transition

G(i, u) = g(i, u)τ i(u),

where τ i(u): Expected transition time.

• We apply the SSP argument used for the discrete-
time case.

− Divide trajectory into cycles marked by suc-
cessive visits to n.

− The cost at (i, u) is G(i, u)− λ∗τ i(u), where
λ∗ is the optimal expected cost per unit time.

− Each cycle is viewed as a state trajectory of
a corresponding SSP problem with the ter-
mination state being essentially n.

• So Bellman’s Eq. for the average cost problem:

h∗(i) = min
u∈U(i)



G(i, u)− λ∗τ i(u) +

n
∑

j=1

pij(u)h∗(j)




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MANUFACTURER EXAMPLE/AVERAGE COST

• The expected transition times are

τ i(Fill) = τ i(Not Fill) =
τmax

2

the expected transition cost is

c i τmax
G(i,Fill) = 0, G(i,Not Fill) =

2

and there is also the “instantaneous” cost

ĝ(i,Fill) = K, ĝ(i,Not Fill) = 0

• Bellman’s equation:

x
h∗(i) = min

[ τ
K − ma

λ∗

2
+ h∗(1),

ci
τmax

2
− λ∗

τmax
+ h∗(i+ 1)

2

]

• Again it can be shown that a threshold policy
is optimal.
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