6.231 DYNAMIC PROGRAMMING

LECTURE 13

LECTURE OUTLINE

- Control of continuous-time Markov chains Semi-Markov problems
- Problem formulation Equivalence to discretetime problems
- Discounted problems
- Average cost problems

CONTINUOUS-TIME MARKOV CHAINS

- Stationary system with finite number of states and controls
- State transitions occur at discrete times
- Control applied at these discrete times and stays constant between transitions
- Time between transitions is random
- Cost accumulates in continuous time (may also be incurred at the time of transition)
- Example: Admission control in a system with restricted capacity (e.g., a communication link)
 - Customer arrivals: a Poisson process
 - Customers entering the system, depart after exponentially distributed time
 - Upon arrival we must decide whether to admit or to block a customer
 - There is a cost for blocking a customer
 - For each customer that is in the system, there is a customer-dependent reward per unit time
 - Minimize time-discounted or average cost

PROBLEM FORMULATION

- x(t) and u(t): State and control at time t
- t_k : Time of kth transition $(t_0 = 0)$
- $x_k = x(t_k)$; $x(t) = x_k$ for $t_k \le t < t_{k+1}$.
- $u_k = u(t_k); \quad u(t) = u_k \text{ for } t_k \le t < t_{k+1}.$
- No transition probabilities; instead transition distributions (quantify the uncertainty about both transition time and next state)

$$Q_{ij}(\tau, u) = P\{t_{k+1} - t_k \le \tau, \ x_{k+1} = j \mid x_k = i, \ u_k = u\}$$

- Two important formulas:
- (1) Transition probabilities are specified by

$$p_{ij}(u) = P\{x_{k+1} = j \mid x_k = i, u_k = u\} = \lim_{\tau \to \infty} Q_{ij}(\tau, u)$$

(2) The Cumulative Distribution Function (CDF) of τ given i, j, u is (assuming $p_{ij}(u) > 0$)

$$P\{t_{k+1} - t_k \le \tau \mid x_k = i, \ x_{k+1} = j, \ u_k = u\} = \frac{Q_{ij}(\tau, u)}{p_{ij}(u)}$$

Thus, $Q_{ij}(\tau, u)$ can be viewed as a "scaled CDF"

EXPONENTIAL TRANSITION DISTRIBUTIONS

• Important example of transition distributions:

$$Q_{ij}(\tau, u) = p_{ij}(u) \left(1 - e^{-\nu_i(u)\tau}\right),\,$$

where $p_{ij}(u)$ are transition probabilities, and $\nu_i(u)$ is called the transition rate at state i.

- Interpretation: If the system is in state i and control u is applied
 - the next state will be j with probability $p_{ij}(u)$
 - the time between the transition to state i and the transition to the next state j is exponentially distributed with parameter $\nu_i(u)$ (independently of j):

 $P\{\text{transition time interval } > \tau \mid i, u\} = e^{-\nu_i(u)\tau}$

- The exponential distribution is memoryless. This implies that for a given policy, the system is a continuous-time Markov chain (the future depends on the past through the current state).
- Without the memoryless property, the Markov property holds only at the times of transition.

COST STRUCTURES

• There is cost g(i, u) per unit time, i.e.

g(i, u)dt = the cost incurred in time dt

- There may be an extra "instantaneous" cost $\hat{g}(i, u)$ at the time of a transition (let's ignore this for the moment)
- Total discounted cost of $\pi = \{\mu_0, \mu_1, \ldots\}$ starting from state i (with discount factor $\beta > 0$)

$$\lim_{N \to \infty} E\left\{ \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} e^{-\beta t} g(x_k, \mu_k(x_k)) dt \mid x_0 = i \right\}$$

Average cost per unit time

$$\lim_{N \to \infty} \frac{1}{E\{t_N\}} E\left\{ \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} g(x_k, \mu_k(x_k)) dt \mid x_0 = i \right\}$$

• We will see that both problems have equivalent discrete-time versions.

DISCOUNTED CASE - COST CALCULATION

• For a policy $\pi = \{\mu_0, \mu_1, \ldots\}$, write

$$J_{\pi}(i) = E\{1\text{st transition cost}\} + E\{e^{-\beta\tau}J_{\pi_1}(j) \mid i, \mu_0(i)\}$$

where $E\{1\text{st transition cost}\} = E\left\{\int_0^{\tau} e^{-\beta t} g(i, \mu_0(i)) dt\right\}$ and $J_{\pi_1}(j)$ is the cost-to-go of $\pi_1 = \{\mu_1, \mu_2, \ldots\}$

• We calculate the two costs in the RHS. The $E\{1\text{st transition cost}\}$, if u is applied at state i, is

$$G(i, u) = E_j \left\{ E_\tau \{ \text{1st transition cost } | j \} \right\}$$

$$= \sum_{j=1}^n p_{ij}(u) \int_0^\infty \left(\int_0^\tau e^{-\beta t} g(i, u) dt \right) \frac{dQ_{ij}(\tau, u)}{p_{ij}(u)}$$

$$= g(i, u) \sum_{j=1}^n \int_0^\infty \frac{1 - e^{-\beta \tau}}{\beta} dQ_{ij}(\tau, u)$$

• Thus the $E\{1st \text{ transition cost}\}$ is

$$G(i, \mu_0(i)) = g(i, \mu_0(i)) \sum_{j=1}^n \int_0^\infty \frac{1 - e^{-\beta \tau}}{\beta} dQ_{ij}(\tau, \mu_0(i))$$

(The summation term can be viewed as a "discounted length of the transition interval $t_1 - t_0$ ".)

COST CALCULATION (CONTINUED)

• Also the expected (discounted) cost from the next state j is

$$E\{e^{-\beta\tau}J_{\pi_{1}}(j) \mid i, \mu_{0}(i)\}\$$

$$= E_{j}\{E\{e^{-\beta\tau} \mid i, \mu_{0}(i), j\}J_{\pi_{1}}(j) \mid i, \mu_{0}(i)\}\$$

$$= \sum_{j=1}^{n} p_{ij}(\mu_{0}(i)) \left(\int_{0}^{\infty} e^{-\beta\tau} \frac{dQ_{ij}(\tau, \mu_{0}(i))}{p_{ij}(\mu_{0}(i))}\right) J_{\pi_{1}}(j)$$

$$= \sum_{j=1}^{n} m_{ij}(\mu_{0}(i))J_{\pi_{1}}(j)$$

where $m_{ij}(u)$ is given by

$$m_{ij}(u) = \int_0^\infty e^{-\beta \tau} dQ_{ij}(\tau, u) \left(< \int_0^\infty dQ_{ij}(\tau, u) = p_{ij}(u) \right)$$
 and can be viewed as the "effective discount factor" [the analog of $\alpha p_{ij}(u)$ in discrete-time case].

• So $J_{\pi}(i)$ can be written as

$$J_{\pi}(i) = G(i, \mu_0(i)) + \sum_{j=1}^{n} m_{ij} (\mu_0(i)) J_{\pi_1}(j)$$

i.e., the (continuous-time discounted) cost of 1st period, plus the (continuous-time discounted) cost-to-go from the next state.

COST CALCULATION (CONTINUED)

• Also the expected (discounted) cost from the next state j is

$$E\{e^{-\beta\tau}J_{\pi_{1}}(j) \mid i, \mu_{0}(i)\}\$$

$$= E_{j}\{E\{e^{-\beta\tau} \mid i, \mu_{0}(i), j\}J_{\pi_{1}}(j) \mid i, \mu_{0}(i)\}\$$

$$= \sum_{j=1}^{n} p_{ij}(\mu_{0}(i)) \left(\int_{0}^{\infty} e^{-\beta\tau} \frac{dQ_{ij}(\tau, \mu_{0}(i))}{p_{ij}(\mu_{0}(i))}\right) J_{\pi_{1}}(j)$$

$$= \sum_{j=1}^{n} m_{ij}(\mu_{0}(i))J_{\pi_{1}}(j)$$

where $m_{ij}(u)$ is given by

$$m_{ij}(u) = \int_0^\infty e^{-\beta \tau} dQ_{ij}(\tau, u) \left(< \int_0^\infty dQ_{ij}(\tau, u) = p_{ij}(u) \right)$$

and can be viewed as the "effective discount factor" [the analog of $\alpha p_{ij}(u)$ in discrete-time case].

• So $J_{\pi}(i)$ can be written as

$$J_{\pi}(i) = G(i, \mu_0(i)) + \sum_{j=1}^{n} m_{ij} (\mu_0(i)) J_{\pi_1}(j)$$

i.e., the (continuous-time discounted) cost of 1st period, plus the (continuous-time discounted) cost-to-go from the next state.

EQUIVALENCE TO AN SSP

- ullet Similar to the discrete-time case, introduce an "equivalent" stochastic shortest path problem with an artificial termination state t
- Under control u, from state i the system moves to state j with probability $m_{ij}(u)$ and to the termination state t with probability $1 \sum_{j=1}^{n} m_{ij}(u)$
- Bellman's equation: For i = 1, ..., n,

$$J^*(i) = \min_{u \in U(i)} \left[G(i, u) + \sum_{j=1}^{n} m_{ij}(u) J^*(j) \right]$$

- Analogs of value iteration, policy iteration, and linear programming.
- If in addition to the cost per unit time g, there is an extra (instantaneous) one-stage cost $\hat{g}(i, u)$, Bellman's equation becomes

$$J^*(i) = \min_{u \in U(i)} \left[\hat{g}(i, u) + G(i, u) + \sum_{j=1}^{n} m_{ij}(u) J^*(j) \right]$$

MANUFACTURER'S EXAMPLE REVISITED

- A manufacturer receives orders with interarrival times uniformly distributed in $[0, \tau_{\text{max}}]$.
- He may process all unfilled orders at cost K > 0, or process none. The cost per unit time of an unfilled order is c. Max number of unfilled orders is n.
- The nonzero transition distributions are

$$Q_{i1}(\tau, \text{Fill}) = Q_{i(i+1)}(\tau, \text{Not Fill}) = \min \left[1, \frac{\tau}{\tau_{\text{max}}}\right]$$

• The one-stage expected cost G is

$$G(i, \text{Fill}) = 0,$$
 $G(i, \text{Not Fill}) = \gamma c i,$

where

$$\gamma = \sum_{i=1}^{n} \int_{0}^{\infty} \frac{1 - e^{-\beta \tau}}{\beta} dQ_{ij}(\tau, u) = \int_{0}^{\tau_{\text{max}}} \frac{1 - e^{-\beta \tau}}{\beta \tau_{\text{max}}} d\tau$$

• There is an "instantaneous" cost

$$\hat{g}(i, \text{Fill}) = K, \qquad \hat{g}(i, \text{Not Fill}) = 0$$

MANUFACTURER'S EXAMPLE CONTINUED

• The "effective discount factors" $m_{ij}(u)$ in Bellman's Equation are

$$m_{i1}(\text{Fill}) = m_{i(i+1)}(\text{Not Fill}) = \alpha,$$

where

$$\alpha = \int_0^\infty e^{-\beta \tau} dQ_{ij}(\tau, u) = \int_0^{\tau_{\text{max}}} \frac{e^{-\beta \tau}}{\tau_{\text{max}}} d\tau = \frac{1 - e^{-\beta \tau_{\text{max}}}}{\beta \tau_{\text{max}}}$$

• Bellman's equation has the form

$$J^*(i) = \min[K + \alpha J^*(1), \gamma ci + \alpha J^*(i+1)], \quad i = 1, 2, ...$$

• As in the discrete-time case, we can conclude that there exists an optimal threshold i^* :

fill the orders <==> their number i exceeds i^*

AVERAGE COST

- Minimize $\lim_{N\to\infty} \frac{1}{E\{t_N\}} E\left\{\int_0^{t_N} g\big(x(t),u(t)\big)dt\right\}$ assuming there is a special state that is "recurrent under all policies"
- Total expected cost of a transition

$$G(i, u) = g(i, u)\overline{\tau}_i(u),$$

where $\overline{\tau}_i(u)$: Expected transition time.

- We apply the SSP argument used for the discretetime case.
 - Divide trajectory into cycles marked by successive visits to n.
 - The cost at (i, u) is $G(i, u) \lambda^* \overline{\tau}_i(u)$, where λ^* is the optimal expected cost per unit time.
 - Each cycle is viewed as a state trajectory of a corresponding SSP problem with the termination state being essentially n.
- So Bellman's Eq. for the average cost problem:

$$h^*(i) = \min_{u \in U(i)} \left[G(i, u) - \lambda^* \overline{\tau}_i(u) + \sum_{j=1}^n p_{ij}(u) h^*(j) \right]$$

MANUFACTURER EXAMPLE/AVERAGE COST

• The expected transition times are

$$\overline{\tau}_i(\text{Fill}) = \overline{\tau}_i(\text{Not Fill}) = \frac{\tau_{\text{max}}}{2}$$

the expected transition cost is

$$G(i, \text{Fill}) = 0,$$
 $G(i, \text{Not Fill}) = \frac{c i \tau_{\text{max}}}{2}$

and there is also the "instantaneous" cost

$$\hat{g}(i, \text{Fill}) = K, \qquad \hat{g}(i, \text{Not Fill}) = 0$$

• Bellman's equation:

$$\begin{split} h^*(i) &= \min \left[K - \lambda^* \frac{\tau_{\text{max}}}{2} + h^*(1), \\ ci \frac{\tau_{\text{max}}}{2} - \lambda^* \frac{\tau_{\text{max}}}{2} + h^*(i+1) \right] \end{split}$$

• Again it can be shown that a threshold policy is optimal.

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.