6.231 DYNAMIC PROGRAMMING
LECTURE 13

LECTURE OUTLINE

e C(Control of continuous-time Markov chains —
Semi-Markov problems

e Problem formulation — Equivalence to discrete-
time problems

e Discounted problems

e Average cost problems



CONTINUOUS-TIME MARKOV CHAINS

e Stationary system with finite number of states
and controls

e State transitions occur at discrete times

e Control applied at these discrete times and stays
constant between transitions

e Time between transitions is random

e Cost accumulates in continuous time (may also
be incurred at the time of transition)

e Example: Admission control in a system with
restricted capacity (e.g., a communication link)

Customer arrivals: a Poisson process

Customers entering the system, depart after
exponentially distributed time

Upon arrival we must decide whether to ad-
mit or to block a customer

There is a cost for blocking a customer

For each customer that is in the system, there
is a customer-dependent reward per unit time

Minimize time-discounted or average cost



PROBLEM FORMULATION

e x(t) and u(t): State and control at time ¢
e ti: Time of kth transition (tp = 0)

o v =ux(tr); x(t) =xp for tp <t <tpys.
o up =u(tr); u(t)=wuy forty <t <tpyi.

e No transition probabilities; instead transition
distributions (quantify the uncertainty about both
transition time and next state)

Qij(T,u) = P{tpy1—ts <7, Tpq1 = J | o6 =4, up = u}
e Two important formulas:

(1) Transition probabilities are specified by

pij(u) = P{xrs1 = J |z =4, up = u} = lim Q;;(7, u)

T— 00

(2) The Cumulative Distribution Function (CDF)
of T given 7, j,u is (assuming p;;(u) > 0)

Qij (T, u)

P{tpi1—te <7 | 2k =i, Tig1 = J, up = u} =
pij(u)

Thus, Q;;(7,u) can be viewed as a “scaled CDF”
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EXPONENTIAL TRANSITION DISTRIBUTIONS

e Important example of transition distributions:

Qij (7, ) = pij(u) (1 — e~ (7)),

where p;;(u) are transition probabilities, and v; (u)
is called the transition rate at state .

e Interpretation: If the system is in state 2 and
control u is applied

— the next state will be j with probability p;;(u)

— the time between the transition to state i
and the transition to the next state 7 is ex-
ponentially distributed with parameter v;(u)
(independently of j):

P{transition time interval > 7 |i,u} = e~vi(W7

e The exponential distribution is memoryless.
This implies that for a given policy, the system
is a continuous-time Markov chain (the future de-
pends on the past through the current state).

e Without the memoryless property, the Markov
property holds only at the times of transition.



COST STRUCTURES

e There is cost g(7,u) per unit time, i.e.
g(?,u)dt = the cost incurred in time dt
e There may be an extra “instantaneous” cost

g(i,u) at the time of a transition (let’s ignore this
for the moment)

e Total discounted cost of m = {uo, 1, ...} start-
ing from state 7 (with discount factor 5 > 0)

tk+1
]\}EHOOE{Z/ xkaﬂk:(xk:))dt | To = z}

e Average cost per unit time

bkt
g {Z/ o(o “”’“))dt|”““0:@}

e We will see that both problems have equivalent
discrete-time versions.




DISCOUNTED CASE - COST CALCULATION

e For a policy m = {uo, 1, - ..}, write
Jx (i) = E{lst transition cost}+E{e "7 Jr, (j) | i, mo(i)}

where E{1st transition cost} = E { [, e=5tg(i, po(i))dt }
and Jr, () is the cost-to-go of m1 = {1, p2, ...}

e We calculate the two costs in the RHS. The
FE{1st transition cost}, if u is applied at state 4, is

G(i,u) — Ej{ET{lst transition cost \ ]}}

_ - (o h Te—Bt . dQij (7, u)
. pzj( )/O (/O 9(7 )dt> pz‘j(U)

=1

e Thus the E{1st transition cost} is

T

N ey s
G (i, uo(8)) = g (i, o (@) / 1 g dQs; (7, no()

(The summation term can be viewed as a “dis-
counted length of the transition interval t1 —ty”.)
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COST CALCULATION (CONTINUED)

e Also the expected (discounted) cost from the
next state 7 is

E{e=F7Jr, (5) | 4, po(i) §
= Ej{ E{e=P7 |4, po (i), j}ry (4) | 4, po(d) }

. ;pijwo@)) ([ et g

ng :uO
— Z My (MO(i)) Jm (])

where m;;(u) is given by

mij(u)Z/ e PTdQij (1, u) <</ sz‘j(Tﬂ):pz‘j(u))
0 0

and can be viewed as the “effective discount fac-
tor” [the analog of ap;;(u) in discrete-time case].

e So Jr(7) can be written as
Jr (i) = G(i, pol(i +me po()) I (5)

i.e., the (Contmuous—tlme discounted) cost of 1st
period, plus the (continuous-time discounted) cost-
to-go from the next state.
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COST CALCULATION (CONTINUED)

e Also the expected (discounted) cost from the
next state 7 is

E{e5Jn, (j) | i, po(i)}
= B {BLe7 il Hm () | )}

. ;Pij(MO(i)) ([ et nnbo) g

ng :LLO
— Z M (MO(D) Jm (])

where m;;(u) is given by

oy (u) = / e_BTinj (T, u) (< / inj (7‘, u) = Pij (U)>
0 0

and can be viewed as the “effective discount fac-
tor” [the analog of ap;;(u) in discrete-time case].

e So J:(i) can be written as

Jo(i) = G(i. ol +me 10(8)) I, (5)

i.e., the (continuous- fime dlscounted) cost of 1st
period, plus the (continuous-time discounted) cost-
to-go from the next state.



EQUIVALENCE TO AN SSP

e Similar to the discrete-time case, introduce an
“equivalent” stochastic shortest path problem with
an artificial termination state ¢

e Under control u, from state ¢ the system moves
to state j with probability m;;(u) and to the ter-
mination state ¢t with probability 1 — 2?21 mi;(u)

e Bellman’s equation: For:=1,...,n,

T (i

) = g}{l) G(i,u) + Y mij(u)J*(j)
u 1 ]:1

e Analogs of value iteration, policy iteration, and
linear programming.

e If in addition to the cost per unit time g, there
is an extra (instantaneous) one-stage cost g(i,u),
Bellman’s equation becomes

T(i) =

min
uelU (1)

Gli,u) 4+ Gi,u) + Y mag(u)J* ()

g=1




MANUFACTURER’S EXAMPLE REVISITED

e A manufacturer receives orders with interarrival
times uniformly distributed in [0, Tmax]-

e He may process all unfilled orders at cost K > 0,
or process none. The cost per unit time of an
unfilled order is c. Max number of unfilled orders
is n.

e The nonzero transition distributions are

Qil(T, Flu) = Qi(i—l—l)(Ta Not FIH) — min [1, 7 ]

Tmax

e The one-stage expected cost G is
G (i, Fill) = 0, G (i, Not Fill) = yci,

where

Ool—e pT Tmax 1 — =07
V= Z/ inj(Ta u) :/O BTmax ar

e There is an “instantaneous” cost

g(i,Fill) = K,  g(i,Not Fill) =0
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MANUFACTURER’S EXAMPLE CONTINUED

e The “effective discount factors” m;;(u) in Bell-
man’s Equation are

m1 (Fill) = mz’(i—l—l)(NOt Fill) = a,

where

0% Tmax _—pf(T1 —BTmax
_ e 1—e
a=/ e ﬁTsz-j(T,u)zf dr =
0 0

Tmax 6 Tmax

e Bellman’s equation has the form

J*(i) = min| K +aJ*(1), yei+aJ*(i+1)], i=1,2,...

e As in the discrete-time case, we can conclude
that there exists an optimal threshold 7*:

fill the orders <==> their number 7 exceeds 7*
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AVERAGE COST

e Minimize limy_; oo ﬁE{ OtNg(x(t),u(t))dt}
assuming there is a special state that is “recurrent
under all policies”

e Total expected cost of a transition
G(Za ’LL) — g(ia ’LL)?Z’(’LL),
where 7;(u): Expected transition time.

e We apply the SSP argument used for the discrete-
time case.

— Divide trajectory into cycles marked by suc-
cessive visits to n.

— The cost at (¢,u) is G(i,u) — A*T;(u), where
A* is the optimal expected cost per unit time.

— Each cycle is viewed as a state trajectory of

a corresponding SSP problem with the ter-
mination state being essentially n.

e So Bellman’s Eq. for the average cost problem:

pr(i) = min |G u) = ATiu) + Zpij (u)h*(7)
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MANUFACTURER EXAMPLE/AVERAGE COST

e The expected transition times are

7i(Fill) = 7;(Not Fill) = =2

the expected transition cost is

C 1 Tmax

G(i,Fill) =0,  G(i,Not Fill) =

and there is also the “instantaneous” cost

g(i,Fill) = K,  g(i, Not Fill) = 0

e Bellman’s equation:

h*(i) = min | K — \* T”;‘X + b (1),

Tmax Tmax )
Tmax s he(i + 1 }
ci— 5 T (2 +1)

e Again it can be shown that a threshold policy
is optimal.
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