
6.231 DYNAMIC PROGRAMMING

LECTURE 12

LECTURE OUTLINE

• Average cost per stage problems

• Connection with stochastic shortest path prob-
lems

• Bellman’s equation

• Value iteration

• Policy iteration

1

AVERAGE COST PER STAGE PROBLEM

• Assume a stationary system with finite number
of states and controls.

• Minimize over policies π = {µ0, µ1, ...}

1
Jπ(x0) = lim

N→∞

N−1

E g xk, µk(xk), wk
N wk

k=0,1,...

{

∑

k=0

}

()

• Important characteristics (not shared by other
types of infinite horizon problems).

− For any fixed T , the cost incurred up to time
T does not matter (only the state that we are
at time T matters)

− If all states “communicate” the optimal cost
is independent of initial state [if we can go
from i to j in finite expected time, we must
have J∗(i) ≤ J∗(j)]. So J∗(i) ≡ λ∗ for all i.

− Because “communication” issues are so im-
portant, the methodology relies heavily on
Markov chain theory.

− The theory depends a lot on whether the
chains corresponding to policies have a single
or multiple recurrent classes. We will focus
on the simplest version, using SSP theory.

2

CONNECTION WITH SSP

• Assumption: State n is special, in that for all
initial states and all policies, n will be visited in-
finitely often (with probability 1).

• Then we expect that J∗(i) ≡ some λ∗

• Divide the sequence of generated states into
cycles marked by successive visits to n.

• Let’s focus on a single cycle: It can be viewed
as a state trajectory of an SSP problem with n as
the termination state.

• Let the cost at i of the SSP be g(i, u)− λ∗

• We will argue (informally) that

Av. Cost Probl. ≡ A Min Cost Cycle Probl. ≡ SSP Probl.

3

CONNECTION WITH SSP (CONTINUED)

• Consider a minimum cycle cost problem: Find
a stationary policy µ that minimizes the expected
cost per transition within a cycle

Cnn(µ)
,

Nnn(µ)

where for a fixed µ,

Cnn(µ) : E{cost from n up to the first return to n}

Nnn(µ) : E{time from n up to the first return to n}

• Intuitively, Cnn(µ)/Nnn(µ) = average cost of
µ, and optimal cycle cost = λ∗, so

Cnn(µ)−N ∗
nn(µ)λ ≥ 0,

with equality if µ is optimal.

• Consider SSP with stage costs g(i, u)−λ∗. The
cost of µ starting from n is Cnn(µ) − Nnn(µ)λ∗,
so the optimal/min cycle µ is also optimal for the
SSP.

• Also: Optimal SSP cost starting from n = 0.
4

BELLMAN’S EQUATION

• Let h∗(i) the optimal cost of this SSP problem
when starting at the nontermination states i =
1, . . . , n. Then h∗(1), . . . , h∗(n) solve uniquely the
corresponding Bellman’s equation

n−1

h∗(i) = min g(i, u) λ∗ + p ∗
ij(u)h (j) , i

u∈U(i)



 −
∑

j=1



 ∀

• If µ∗ is an optimal stationary policy for the SSP
problem, we have

h∗(n) = Cnn(µ∗)−N ∗ ∗
nn(µ)λ = 0

• Combining these equations, we have

n

λ∗+h∗(i) = min



g(i, u) + ,
u∈U(i)

∑

pij(u)h∗(j)
j=1



 ∀ i

h∗(n) = 0

• If µ∗(i) attains the min for each i, µ∗ is optimal.

• There is also Bellman Eq. for a single policy µ.
5

MORE ON THE CONNECTION WITH SSP

• Interpretation of h∗(i) as a relative or differen-
tial cost: It is the minimum of

E{cost to reach n from i for the first time}
− E{cost if the stage cost were λ∗ and not g(i, u)}

• Algorithms: We don’t know λ∗, so we can’t
solve the average cost problem as an SSP problem.
But similar value and policy iteration algorithms
are possible, and will be given shortly.

• Example: A manufacturer at each time

− Receives an order with prob. p and no order
with prob. 1− p.

− May process all unfilled orders at cost K >
0, or process no order at all. The cost per
unfilled order at each time is c > 0.

− Maximum number of orders that can remain
unfilled is n.

− Find a processing policy that minimizes the
total expected cost per stage.

6

EXAMPLE (CONTINUED)

• State = number of unfilled orders. State 0 is
the special state for the SSP formulation.

• Bellman’s equation: For states i = 0, 1, . . . , n−1

λ∗ + h∗(i) = min
[

K + (1− p)h∗(0) + ph∗(1),

ci+ (1− p)h∗(i) + ph∗(i+ 1) ,

and for state n

]

λ∗ + h∗(n) = K + (1− p)h∗(0) + ph∗(1)

Also h∗(0) = 0.

• Optimal policy: Process i unfilled orders if

K+(1−p)h∗(0)+ph∗(1) ≤ ci+(1−p)h∗(i)+ph∗(i+1)

• Intuitively, h∗(i) is monotonically nondecreas-
ing with i (interpret h∗(i) as optimal costs-to-go
for the associate SSP problem). So a threshold
policy is optimal: process the orders if their num-
ber exceeds some threshold integer m∗.

7

VALUE ITERATION

• Natural VI method: Generate optimal k-stage
costs by DP algorithm starting with any J0:

n

Jk+1(i) = min



g(i, u) +
∑

pij(u)Jk(j)
u∈U(i)

j=1



 , ∀ i

• Convergence: limk→∞ Jk(i)/k = λ∗ for all i.

• Proof outline: Let J∗
k be so generated start-

ing from the opt. differential cost, i.e., the initial
condition J∗ = h∗

0 . Then, by induction,

J∗(i) = kλ∗ ∗
k + h (i), ∀i, ∀ k.

On the other hand,

∣

∣Jk(i)− J∗
k (i)

∣

∣ ≤ max
∣

∣J0(j) ,
,

− h∗(j)
j=1,... n

∣

∀ i

since Jk(i) and J∗

∣

k (i) are optimal costs for two
k-stage problems that differ only in the terminal
cost functions, which are J0 and h∗.

8

RELATIVE VALUE ITERATION

• The VI method just described has two draw-
backs:

− Since typically some components of Jk di-
verge to∞ or−∞, calculating limk→∞ Jk(i)/k
is numerically cumbersome.

− The method will not compute a correspond-
ing differential cost vector h∗.

• We can bypass both difficulties by subtracting
a constant from all components of the vector Jk,
so that the difference, call it hk, remains bounded.

• Relative VI algorithm: Pick any state s, and
iterate according to

n

hk+1(i) = min



g(i, u) +
∑

pij(u)hk(j)
u∈U(i)

j=1





− min



n

g(s, u) +
∑

psj(u)hk(j)
u∈U(s)

j=1



 , ∀ i

• Convergence: We can show hk → h∗ (under an
extra assumption; see Vol. II).

9

POLICY ITERATION

• At iteration k, we have a stationary µk.

• Policy evaluation: Compute λk and hk(i) of µk,
using the n+ 1 equations hk(n) = 0 and

n

λk + hk(i) = g
(

i, µk(i)
)

+
∑

pij
(

µk(i)
j=1

)

hk(j), ∀ i

• Policy improvement: (For the λk-SSP) Find

n

µk+1(i) = arg min



g(i, u) +
∑

p k
ij(u)h (j)

u∈U(i)
j=1



 , ∀ i

• If λk+1 = λk and hk+1(i) = hk(i) for all i, stop;
otherwise, repeat with µk+1 replacing µk.

• Result: For each k, we either have λk+1 < λk

or we have policy improvement for the λk-SSP:

λk+1 = λk, hk+1(i) ≤ hk(i), i = 1, . . . , n.

The algorithm terminates with an optimal policy.

10

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

