6.231 DYNAMIC PROGRAMMING
LECTURE 12

LECTURE OUTLINE

e Average cost per stage problems

e (Connection with stochastic shortest path prob-
lems

e Bellman’s equation
e Value iteration

e Policy iteration



AVERAGE COST PER STAGE PROBLEM

e Assume a stationary system with finite number
of states and controls.

e Minimize over policies m = {uo, 1, ...}

N-—-1
, 1
Jw(ﬂﬁo) — ]\;gnooﬁ £ {kz;g(xk,uk(:ck),wk)}

k=0,1,...

e Important characteristics (not shared by other
types of infinite horizon problems).

— For any fixed T, the cost incurred up to time
T does not matter (only the state that we are
at time T matters)

— If all states “communicate” the optimal cost
is independent of initial state [if we can go
from 7 to 7 in finite expected time, we must
have J*(i) < J*(j)]. So J*(i) = X\* for all 4.

— Because “communication” issues are so im-
portant, the methodology relies heavily on
Markov chain theory.

— The theory depends a lot on whether the
chains corresponding to policies have a single
or multiple recurrent classes. We will focus
on the simplest version, using SSP theory.
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CONNECTION WITH SSP

e Assumption: State n is special, in that for all
initial states and all policies, n will be visited in-
finitely often (with probability 1).

e Then we expect that J"(i) = some \*

e Divide the sequence of generated states into
cycles marked by successive visits to n.

e Let’s focus on a single cycle: It can be viewed
as a state trajectory of an SSP problem with n as
the termination state.

Artificial Termination State

e Let the cost at i of the SSP be g(i,u) — \*
e We will argue (informally) that

Av. Cost Probl. = A Min Cost Cycle Probl. = SSP Probl.



CONNECTION WITH SSP (CONTINUED)

e (Consider a minimum cycle cost problem: Find
a stationary policy p that minimizes the expected
cost per transition within a cycle

Crnn(p)
Ny ()

where for a fixed p,
Crn(p) : E{cost from n up to the first return to n}
Npn(p) : E{time from n up to the first return to n}

e Intuitively, Cnn(pt)/Nnn(p) = average cost of
14, and optimal Cycle cost = A*, so

Chrin(p) = Nan(p)A* > 0,

with equality if p is optimal.

e Consider SSP with stage costs g(z,u) — A*. The
cost of u starting from n is Cpn () — Npn () A*,
so the optimal/min cycle y is also optimal for the

SSP.
e Also: Optimal SSP cost starting from n = 0.



BELLMAN’S EQUATION

e Let h*(7) the optimal cost of this SSP problem
when starting at the nontermination states ¢ =
1,...,n. Then h*(1),..., h*(n) solve uniquely the
corresponding Bellman’s equation

n—1
h*(i) = gll}f(l) gliu) = A+ pij(uh*(5)| , Vi
u (] ]:1

e If u* is an optimal stationary policy for the SSP
problem, we have

h*(n) = Cnn(p*) — Npn(p*)A* =0

e Combining these equations, we have

Aehe(i) = min gli,u) + Y pig(uh*(j)| , Vi
u 1 ']21

h*(n) =0
o If y*(i) attains the min for each ¢, u* is optimal.

e There is also Bellman Eq. for a single policy pu.
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MORE ON THE CONNECTION WITH SSP

e Interpretation of h*(i) as a relative or differen-
tial cost: It is the minimum of

FE{cost to reach n from i for the first time}

— F{cost if the stage cost were A* and not g(i,u)}

e Algorithms: We don’t know A*, so we can’t
solve the average cost problem as an SSP problem.
But similar value and policy iteration algorithms
are possible, and will be given shortly.

e Example: A manufacturer at each time
— Receives an order with prob. p and no order
with prob. 1 — p.

— May process all unfilled orders at cost K >
0, or process no order at all. The cost per
unfilled order at each time is ¢ > 0.

— Maximum number of orders that can remain
unfilled is n.

— Find a processing policy that minimizes the
total expected cost per stage.



EXAMPLE (CONTINUED)

e State = number of unfilled orders. State 0 is
the special state for the SSP formulation.

e Bellman’s equation: For statest=10,1,...,n—1

A* + h*(i) = min |[K + (1 — p)h*(0) + ph*(1),
ci+ (1 — p)h*(i) + ph*(i + 1)],
and for state n
A 4 h*(n) = K + (1 — p)h*(0) + ph*(1)
Also h*(0) = 0.

e Optimal policy: Process ¢ unfilled orders if

K+(1—p)h*(0)+ph*(1) < ci+(1—p)h*(i)+ph*(i+1)

e Intuitively, h*(¢) is monotonically nondecreas-
ing with ¢ (interpret h*(7) as optimal costs-to-go
for the associate SSP problem). So a threshold
policy is optimal: process the orders if their num-
ber exceeds some threshold integer m*.
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VALUE ITERATION

e Natural VI method: Generate optimal k-stage
costs by DP algorithm starting with any Jg:

Jetr1(i) = min, g(i,u) + Y pij(w) k()| , Vi
j=1

o Convergence: limy_, o Ji(7)/k = A* for all i.

e Proof outline: Let J; be so generated start-
ing from the opt. differential cost, i.e., the initial
condition J;j = h*. Then, by induction,

Jr(i) = kM* + h*(i), Vi, V k.

On the other hand,

, Vi

since Ji(¢) and J;(¢) are optimal costs for two
k-stage problems that differ only in the terminal
cost functions, which are Jy and h*.



RELATIVE VALUE ITERATION

e The VI method just described has two draw-
backs:

— Since typically some components of Jp di-
verge to oo or —oo, calculating limy_, oo Ji(7) /k
is numerically cumbersome.

— The method will not compute a correspond-
ing differential cost vector h*.

e We can bypass both difficulties by subtracting
a constant from all components of the vector Jg,
so that the difference, call it hy, remains bounded.

e Relative VI algorithm: Pick any state s, and
iterate according to

hit1 (i) = urenl}r(lz) gli,u) + Y pij(u)he(4)
j=1

- nin g(s,u) + > psi(whi(§) |, Vi

e Convergence: We can show hy — h* (under an
extra assumption; see Vol. II).
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POLICY ITERATION

e At iteration k, we have a stationary p*.

e Policy evaluation: Compute A* and h*(7) of u*,
using the n + 1 equations h*(n) = 0 and

Nb o (i) = g (i, 15 () + D pi (E (D) PR (), Vi

e Policy improvement: (For the A*-SSP) Find

phEH (i) = arg min H g(iw) £ pig (hH(7)]
Uu 2 le

o If \etl = Ak and hk+1(7) = h%(i) for all ¢, stop;
otherwise, repeat with p*s+1 replacing u*.

e Result: For each k, we either have A\ftl < \k
or we have policy improvement for the A\¥-SSP:

N+l = Nk RRFL() < RE(D), i=1,...,n.

The algorithm terminates with an optimal policy.
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