
6.231 DYNAMIC PROGRAMMING
 

LECTURE 11
 

LECTURE OUTLINE
 

•	 Review of stochastic shortest path problems 

•	 Computational methods for SSP 

− Value iteration 

− Policy iteration 

− Linear programming 

• Computational methods for discounted prob­
lems 

1



STOCHASTIC SHORTEST PATH PROBLEMS
 

• Assume finite-state system: States 1, . . . , n and 
special cost-free termination state t 

− Transition probabilities pij(u) 

− Control constraints u ∈ U(i) (finite set) 

− Cost of policy π = {µ0, µ1, . . .} is 

  

N−1 
 

 

( )

 

Jπ(i) = lim E g xk, µk(xk)  x0 = i
N→∞ 

k=0 

− Optimal policy if Jπ(i) = J ∗ (i) for all i. 

− Special notation: For stationary policies π = 
{µ, µ, . . .}, we use Jµ(i) in place of Jπ(i). 

• Assumption (Termination inevitable): There ex­
ists integer m such that for every policy and initial 
state, there is positive probability that the termi­
nation state will be reached after no more that m 
stages; for all π, we have 

ρπ = max  t | x0 = i, π} < 1P{xm = 
i=1,...,n 

2



3

MAIN RESULT

• Given any initial conditions J0(1), . . . , J0(n), the
sequence Jk(i) generated by value iteration

n

Jk+1(i) = min g
u∈U(i)

[

(i, u) +
∑

pij(u)Jk(j) , ∀ i

j=1

]

converges to the optimal cost J∗(i) for each i.

• Bellman’s equation has J∗(i) as unique solution:

n

J∗(i) = min i
u∈U i)

[

g( , u) +
(

]

∑

pij(u)J
∗(j) , ∀ i

j=1

• For a stationary policy µ, Jµ(i), i = 1, . . . , n,
are the unique solution of the linear system of n
equations

n

Jµ(i) = g
(

i, µ(i)
)

+
∑

pij µ(i) Jµ(j), ∀ i = 1, . . . , n

j=1

•

( )

A stationary policy µ is optimal if and only
if for every state i, µ(i) attains the minimum in
Bellman’s equation.



BELLMAN’S EQ. FOR A SINGLE POLICY
 

• Consider a stationary policy µ 

• Jµ(i), i = 1, . . . , n, are the unique solution of the 
linear system of n equations 

( ) ( )

Jµ(i) = g i, µ(i) + pij µ(i) Jµ(j), ∀ i = 1, . . . , n 

• The equation provides a way to compute Jµ(i), 
i = 1, . . . , n, but the computation is substantial for 
large n [O(n 3)] 

• For large n, value iteration may be preferable. 
(Typical case of a large linear system of equations, 
where an iterative method may be better than a 
direct solution method.) 

• For VERY large n, exact methods cannot be 
applied, and approximations are needed. (We will 
discuss these later.) 

4

n
∑

j=1



5

POLICY ITERATION

• It generates a sequence µ1, µ2, . . . of stationary
policies, starting with any stationary policy µ0.

• At the typical iteration, given µk, we perform
a policy evaluation step, that computes the J kµ

(i)

as the solution of the (linear) system of equations
n

J(i) = g
(

i, µk(i) + pij µk(i) J(j), i = 1, . . . , n,

j=1

in the n unkno

)

wn

∑

s J(1)

(

, . . . , J

)

(n). We then per-
form a policy improvement step,

n

µk+1(i) = arg min

[

g(i, u) +
∑

pij(u)J kµ
(j)

u∈U(i)
j=1

]

, ∀ i

• Terminate when J
µk

(i) = J
µk+1 (i) ∀ i. Then

J kµ +1 = J∗ and µk+1 is optimal, since

n

J kµ +1(i) = g(i, µk+1(i)) +
∑

pij(µ
k+1(i))J kµ +1(j)

j=1

n

= min

[

g(i, u) +
∑

pij(u)J k+1µ
(j)

u∈U(i)
j=1

]



6

JUSTIFICATION OF POLICY ITERATION

• We can show that J kµ (i) ≥ J kµ +1(i) for all i, k

• Fix k and consider the sequence generated by
n

JN+1(i) = g
(

i, µk+1(i)
)

+
∑

pij µk+1(i) JN (j)

j=1

where J0(i) = J kµ
(i). We have

( )

n

J (i) = g
(

i, µk(i)
)

+
∑

p
(

µk
0 ij (i)

j=1

)

J0(j)

n

≥ g
(

i, µk+1(i)
)

+
∑

pij J

j=

(

µk+1(i)

1

)

0(j) = J1(i)

• Using the monotonicity property of DP,

J0(i) ≥ J1(i) ≥ · · · ≥ JN (i) ≥ JN+1(i) ≥ · · · , ∀ i

Since JN (i) → J kµ +1(i) as N → ∞, we obtain pol-
icy improvement, i.e.

J kµ
(i) = J0(i) ≥ J kµ +1(i) ∀ i, k

• A policy cannot be repeated (there are finitely
many stationary policies), so the algorithm termi-
nates with an optimal policy



7

LINEAR PROGRAMMING

• We claim that J∗ is the “largest” J that satisfies
the constraint

n

J(i) ≤ g(i, u) +
∑

pij(u)J(j), (1)

j=1

for all i = 1, . . . , n and u ∈ U(i).

• Proof: If we use value iteration to generate a
sequence of vectors Jk = Jk(1), . . . , Jk(n) starting
with a J0 that satisfies t

(

he constraint, i.e

)

.,

n

J0(i) ≤ min
∈U(i)

[

g(i, u) +
u

]

∑

pij(u)J0(j) , ∀ i

j=1

then, Jk(i) ≤ Jk+1(i) for all k and i (monotonicity
property of DP) and Jk → J∗, so that J ∗

0(i) ≤ J (i)
for all i.

• So J∗ = J∗(1), . . . , J∗(n) is the solution of the
linear progr

(

am of maximizin

)

g
∑n

J(i)
i=1

subject to
the constraint (1).



=

=0

2)J(2) 

( )

= J∗(1), J∗(2)

J(2) 

J∗ 

J(1) = g(1, u1) + p11(u1)J(1) + p12(u1)J(2) 

J(1) = g(1, u

J(2) = g(2, u1) + p21(u1)J(1) + p22(u1)J(2) 

J(2) = g(2, u2) + p21(u2)J(1) + p22(u

2) + p11(u2)J(1) + p12(u2)J(2) 

= J(1) 

• Drawback: For large n the dimension of this pro­
gram is very large. Furthermore, the number of 
constraints is equal to the number of state-control 
pairs. 

8

LINEAR PROGRAMMING (CONTINUED)

• Obtain J∗ by Max
∑n

J(i)
i=1

subject to

n

J(i) ≤ g(i, u)+
∑

pij(u)J(j), i = 1, . . . , n, u ∈ U(i)

j=1



DISCOUNTED PROBLEMS 

• Assume a discount factor α < 1. 

• Conversion to an SSP problem. 

9

• kth stage cost is the same for both problems

• Value iteration converges to J∗ for all initial J0:

n

Jk+1(i) = min g(i, u) + α
u∈U(i)

[ ]

∗

∑

pij(u)Jk(j) , ∀ i

j=1

• J is the unique solution of Bellman’s equation:

J∗(i) = min

[

n

g(i, u) + α
u∈U(i)

∑

pij(u)J
∗(j)

j=1

]

, ∀ i

• Policy iteration terminates with an optimal pol-
icy, and linear programming works.



� 

DISCOUNTED PROBLEM EXAMPLE
 

•	 A manufacturer at each time: 

− Receives an order with prob. p and no order 
with prob. 1− p. 

− May process all unfilled orders at cost K > 
0, or process no order at all. The cost per 
unfilled order at each time is c > 0. 

− Maximum number of orders that can remain 
unfilled is n. 

− Find a processing policy that minimizes the 
α-discounted cost per stage. 

− State: Number of unfilled orders at the start 
of a period (i = 0, 1, . . . , n). 

•	 Bellman’s Eq.: 

[

J ∗ (i) = min K + α(1− p)J ∗ (0) + αpJ ∗ (1), 

ci	 + α(1− p)J ∗ (i) + αpJ ∗ (i+ 1) , 

for the states i = 0, 1, . . . , n − 1, and 

J ∗ (n) = K + α(1− p)J ∗ (0) + αpJ ∗ (1) 

for state n. 

• Analysis: Argue that J ∗ (i) is mon. increasing in 
i, to show that the optimal policy is a threshold 
policy. 10



MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



