6.231 DYNAMIC PROGRAMMING

LECTURE 11

LECTURE OUTLINE

- Review of stochastic shortest path problems
- Computational methods for SSP
 - Value iteration
 - Policy iteration
 - Linear programming
- Computational methods for discounted problems

STOCHASTIC SHORTEST PATH PROBLEMS

- Assume finite-state system: States $1, \ldots, n$ and special cost-free termination state t
 - Transition probabilities $p_{ij}(u)$
 - Control constraints $u \in U(i)$ (finite set)
 - Cost of policy $\pi = \{\mu_0, \mu_1, \ldots\}$ is

$$J_{\pi}(i) = \lim_{N \to \infty} E\left\{ \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k)) \middle| x_0 = i \right\}$$

- Optimal policy if $J_{\pi}(i) = J^{*}(i)$ for all i.
- Special notation: For stationary policies $\pi = \{\mu, \mu, \ldots\}$, we use $J_{\mu}(i)$ in place of $J_{\pi}(i)$.
- Assumption (Termination inevitable): There exists integer m such that for every policy and initial state, there is positive probability that the termination state will be reached after no more that m stages; for all π , we have

$$\rho_{\pi} = \max_{i=1,\dots,n} P\{x_m \neq t \mid x_0 = i, \pi\} < 1$$

MAIN RESULT

• Given any initial conditions $J_0(1), \ldots, J_0(n)$, the sequence $J_k(i)$ generated by value iteration

$$J_{k+1}(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J_k(j) \right], \ \forall \ i$$

converges to the optimal cost $J^*(i)$ for each i.

• Bellman's equation has $J^*(i)$ as unique solution:

$$J^*(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^n p_{ij}(u) J^*(j) \right], \ \forall \ i$$

• For a stationary policy μ , $J_{\mu}(i)$, i = 1, ..., n, are the unique solution of the linear system of n equations

$$J_{\mu}(i) = g(i, \mu(i)) + \sum_{j=1}^{n} p_{ij}(\mu(i)) J_{\mu}(j), \quad \forall i = 1, \dots, n$$

• A stationary policy μ is optimal if and only if for every state i, $\mu(i)$ attains the minimum in Bellman's equation.

BELLMAN'S EQ. FOR A SINGLE POLICY

- Consider a stationary policy μ
- $J_{\mu}(i)$, i = 1, ..., n, are the unique solution of the linear system of n equations

$$J_{\mu}(i) = g(i, \mu(i)) + \sum_{j=1}^{n} p_{ij}(\mu(i)) J_{\mu}(j), \quad \forall i = 1, \dots, n$$

- The equation provides a way to compute $J_{\mu}(i)$, i = 1, ..., n, but the computation is substantial for large n $[O(n^3)]$
- For large n, value iteration may be preferable. (Typical case of a large linear system of equations, where an iterative method may be better than a direct solution method.)
- For VERY large n, exact methods cannot be applied, and approximations are needed. (We will discuss these later.)

POLICY ITERATION

- It generates a sequence μ^1, μ^2, \ldots of stationary policies, starting with any stationary policy μ^0 .
- At the typical iteration, given μ^k , we perform a policy evaluation step, that computes the $J_{\mu k}(i)$ as the solution of the (linear) system of equations

$$J(i) = g(i, \mu^k(i)) + \sum_{j=1}^n p_{ij}(\mu^k(i))J(j), \quad i = 1, \dots, n,$$

in the *n* unknowns $J(1), \ldots, J(n)$. We then perform a policy improvement step,

$$\mu^{k+1}(i) = \arg\min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J_{\mu^k}(j) \right], \ \forall \ i$$

• Terminate when $J_{\mu k}(i) = J_{\mu k+1}(i) \, \forall i$. Then $J_{\mu k+1} = J^*$ and μ^{k+1} is optimal, since

$$J_{\mu^{k+1}}(i) = g(i, \mu^{k+1}(i)) + \sum_{j=1}^{n} p_{ij}(\mu^{k+1}(i)) J_{\mu^{k+1}}(j)$$
$$= \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J_{\mu^{k+1}}(j) \right]$$

JUSTIFICATION OF POLICY ITERATION

- We can show that $J_{\mu k}(i) \geq J_{\mu k+1}(i)$ for all i, k
- Fix k and consider the sequence generated by

$$J_{N+1}(i) = g(i, \mu^{k+1}(i)) + \sum_{i=1}^{n} p_{ij}(\mu^{k+1}(i)) J_N(j)$$

where $J_0(i) = J_{\mu k}(i)$. We have

$$J_0(i) = g(i, \mu^k(i)) + \sum_{j=1}^n p_{ij}(\mu^k(i)) J_0(j)$$

$$\geq g(i, \mu^{k+1}(i)) + \sum_{j=1}^{n} p_{ij}(\mu^{k+1}(i))J_0(j) = J_1(i)$$

• Using the monotonicity property of DP,

$$J_0(i) \ge J_1(i) \ge \cdots \ge J_N(i) \ge J_{N+1}(i) \ge \cdots, \quad \forall i$$

Since $J_N(i) \to J_{\mu^{k+1}}(i)$ as $N \to \infty$, we obtain policy improvement, i.e.

$$J_{\mu k}(i) = J_0(i) \ge J_{\mu k+1}(i) \quad \forall i, k$$

• A policy cannot be repeated (there are finitely many stationary policies), so the algorithm terminates with an optimal policy

LINEAR PROGRAMMING

• We claim that J^* is the "largest" J that satisfies the constraint

$$J(i) \le g(i, u) + \sum_{j=1}^{n} p_{ij}(u)J(j), \tag{1}$$

for all i = 1, ..., n and $u \in U(i)$.

• Proof: If we use value iteration to generate a sequence of vectors $J_k = (J_k(1), \ldots, J_k(n))$ starting with a J_0 that satisfies the constraint, i.e.,

$$J_0(i) \le \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^n p_{ij}(u) J_0(j) \right], \quad \forall i$$

then, $J_k(i) \leq J_{k+1}(i)$ for all k and i (monotonicity property of DP) and $J_k \to J^*$, so that $J_0(i) \leq J^*(i)$ for all i.

• So $J^* = (J^*(1), \dots, J^*(n))$ is the solution of the linear program of maximizing $\sum_{i=1}^n J(i)$ subject to the constraint (1).

LINEAR PROGRAMMING (CONTINUED)

• Obtain J^* by Max $\sum_{i=1}^n J(i)$ subject to

$$J(i) \le g(i, u) + \sum_{j=1}^{n} p_{ij}(u)J(j), \quad i = 1, \dots, n, \ u \in U(i)$$

• Drawback: For large n the dimension of this program is very large. Furthermore, the number of constraints is equal to the number of state-control pairs.

DISCOUNTED PROBLEMS

- Assume a discount factor $\alpha < 1$.
- Conversion to an SSP problem.

- kth stage cost is the same for both problems
- Value iteration converges to J^* for all initial J_0 :

$$J_{k+1}(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) J_k(j) \right], \ \forall \ i$$

• J^* is the unique solution of Bellman's equation:

$$J^{*}(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) J^{*}(j) \right], \ \forall \ i$$

• Policy iteration terminates with an optimal policy, and linear programming works.

DISCOUNTED PROBLEM EXAMPLE

- A manufacturer at each time:
 - Receives an order with prob. p and no order with prob. 1 p.
 - May process all unfilled orders at cost K > 0, or process no order at all. The cost per unfilled order at each time is c > 0.
 - Maximum number of orders that can remain unfilled is n.
 - Find a processing policy that minimizes the α -discounted cost per stage.
 - State: Number of unfilled orders at the start of a period (i = 0, 1, ..., n).
- Bellman's Eq.:

$$J^{*}(i) = \min \left[K + \alpha (1 - p) J^{*}(0) + \alpha p J^{*}(1), ci + \alpha (1 - p) J^{*}(i) + \alpha p J^{*}(i + 1) \right],$$

for the states $i = 0, 1, \ldots, n - 1$, and

$$J^*(n) = K + \alpha(1 - p)J^*(0) + \alpha pJ^*(1)$$

for state n.

• Analysis: Argue that $J^*(i)$ is mon. increasing in i, to show that the optimal policy is a threshold policy.

6.231 Dynamic Programming and Stochastic Control Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.