6.231 DYNAMIC PROGRAMMING
LECTURE 11
LECTURE OUTLINE

e Review of stochastic shortest path problems

e Computational methods for SSP
— Value iteration
— Policy iteration
— Linear programming

e (Computational methods for discounted prob-
lems

STOCHASTIC SHORTEST PATH PROBLEMS

e Assume finite-state system: States 1,...,n and
special cost-free termination state ¢

— Transition probabilities p;;(u)
— Control constraints u € U(4) (finite set)
— Cost of policy © = {uo, p1,...} is

I (1) —]VllinmE{Zg Ty o (T | To =i}

— Optimal policy if J.(i) = J* (i) for all 3.

— Special notation: For stationary policies m =
{w, p, ...}, we use J,(i) in place of J (7).

e Assumption (Termination inevitable): There ex-
ists integer m such that for every policy and initial
state, there is positive probability that the termi-
nation state will be reached after no more that m
stages; for all =, we have

MAIN RESULT

e (Given any initial conditions Jy(1),..., Jo(n), the
sequence J (i) generated by value iteration

Jkﬂ(i)_urengr(li)[1, U —I—pr } Y 1

converges to the optimal cost J*(¢) for each 1.

e Bellman’s equation has J* (i) as unique solution:
T — i Z
=1, | { 0+ Do } v

e For a stationary policy u, J.(i), i = 1,...,n,
are the unique solution of the linear system of n
equations

Ju(i) = g (i, () + > iy (0(8)) Ju(G), Yi=1,...,m

e A stationary policy p is optimal if and only
if for every state i, u(i) attains the minimum in
Bellman’s equation.

BELLMAN’S EQ. FOR A SINGLE POLICY

e Consider a stationary policy pu

e J,(i),i=1,...,n, are the unique solution of the
linear system of n equations

Ju() = g (i, w(@) + Y pis (00) Ju(i), Yi=1,....,n

e The equation provides a way to compute J, (i),
i =1,...,n, but the computation is substantial for
large n [O(n®)]

e For large n, value iteration may be preferable.
(Typical case of a large linear system of equations,
where an iterative method may be better than a
direct solution method.)

e For VERY large n, exact methods cannot be
applied, and approximations are needed. (We will
discuss these later.)

POLICY ITERATION

o It generates a sequence p', u?, ... of stationary
policies, starting with any stationary policy u°.

e At the typical iteration, given p”, we perform
a policy evaluation step, that computes the J x (7)

as the solution of the (linear) system of equations

J()—gz,u —I—pr J(G), 1=1,...,n,

in the n unknowns J(l),...,J(n). We then per-
form a policy improvement step,

u€eU (1)

Iuk+1(z) = arg min {g(z’,u) + Zpij (u)Jle€ (])} , Vi

e Terminate when J (i) = J k41(é) V 4. Then

Jk+1 =J* and p** is optimal, since

T (8) = gi, p*! +pr @) 1 ()

— mj i (u)J
wet (i) |” [b u +ij phtl)}

JUSTIFICATION OF POLICY ITERATION

e We can show that J (i) > J k41 (7) for all i,k

e Fix k and consider the sequence generated by

JN+1()—g 1 ,LL ‘|‘pr k+1 (])
where Jo(i) = J x(i). We have
Jo(i) =) + pr (1)) Jo(4)

TN +Z pH@D) o(5) = i)

e Using the monotomelty property of DP,
Jo(4) 2 Ji(4) =2 -+ =2 In(i) 2 Inpa(i) =2 ---, Vi

Since Jn (i) = J k+1(i) as N — oo, we obtain pol-
icy Improvement, 1.e.

Ji (i) = Jo(i) > J ps1(i) Vik

,u

e A policy cannot be repeated (there are finitely
many stationary policies), so the algorithm termi-
nates with an optimal policy

LINEAR PROGRAMMING

e We claim that J* is the “largest” J that satisfies
the constraint

J(i) < gli,u) + Y pis(w)J(3), (1)

foralli=1,...,n and u € U(3).

e Proof: If we use value iteration to generate a
sequence of vectors Jy, = (Jk(l), Cee Jk(n)) starting
with a Jp that satisfies the constraint, i.e.,

uweU (1)

Jo(i) < min |g(i,u) + Y pij(w)do(j) |, Vi

then, Jy (i) < Jg+1(2) for all k and ¢ (monotonicity
property of DP) and J, — J*, so that Jo(i) < J*(4)
for all 4.

e SoJ" = (J*(l), e J*(n)) is the solution of the

linear program of maximizing » " | J(¢) subject to
the constraint (1).

LINEAR PROGRAMMING (CONTINUED)

e Obtain J* by Max) " . J(i) subject to

J(i) < gli,u)+Y pi(w)J(), i=1,...,n, u€U()

i@ | J(2) = g(2,42) + por (u2) J (1) + pa(u2)J(2)

J(2) = 9(2,ull) + p21(u')J (1) + p2a(u')J (2)

0 J(1)

e Drawback: For large n the dimension of this pro-
gram is very large. Furthermore, the number of
constraints is equal to the number of state-control
pairs.

DISCOUNTED PROBLEMS

e Assume a discount factor o < 1.

e Conversion to an SSP problem.

piju)

pj;'(u)

e kth stage cost is the same for both problems

e Value iteration converges to J* for all initial Jp:

uwelU(7)

Jrt1() = min {g(iau)ﬂLazpij(u)Jk(j)} , Vi

e J* is the unique solution of Bellman’s equation:
J7(i) = i {g(iau) +Oéz;pij(u)J (J)} , Vi
j:

e Policy iteration terminates with an optimal pol-
icy, and linear programming works.

DISCOUNTED PROBLEM EXAMPLE

e A manufacturer at each time:

— Receives an order with prob. p and no order
with prob. 1 — p.

— May process all unfilled orders at cost K >
0, or process no order at all. The cost per
unfilled order at each time is ¢ > 0.

— Maximum number of orders that can remain
unfilled is n.

— Find a processing policy that minimizes the
a-discounted cost per stage.

— State: Number of unfilled orders at the start
of a period (: =0,1,...,n).

e Bellman’s Eq.:

J” (i) = min [K + a(l —p)J (0) + apJ™ (1),
ci+a(l—p)J @)+ apJ (i + 1)],

for the states¢=10,1,...,n— 1, and

J'(n)=K+a(l—p)J (0)+apJ (1)
for state n.

e Analysis: Argue that J*(¢) is mon. increasing in
i, to show that the optimal policy is a threshold
policy. 10

MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

