6.231 DYNAMIC PROGRAMMING
LECTURE 10

LECTURE OUTLINE

Infinite horizon problems

Stochastic shortest path (SSP) problems
Bellman’s equation

Dynamic programming — value iteration

Discounted problems as special case of SSP



TYPES OF INFINITE HORIZON PROBLEMS

e Same as the basic problem, but:
— The number of stages is infinite.
— Stationary system and cost (except for dis-
counting).

e Total cost problems: Minimize

N—1
Jw(xO) — ]\;Enoo wE]'{: {Zakg<xk,uk(a:k),wk)}
k=0,1,... k=0

(if the lim exists - otherwise lim sup).

— Stochastic shortest path (SSP) problems (a =
1, and a termination state)

— Discounted problems (a < 1, bounded g)
— Undiscounted, and discounted problems with
unbounded g

e Average cost problems

N—-1
R S

k=0,1,...

e Infinite horizon characteristics: Challenging anal-
ysis, elegance of solutions and algorithms (station-
ary optimal policies are likely)
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PREVIEW OF INFINITE HORIZON RESULTS

e Key issue: The relation between the infinite and
finite horizon optimal cost-to-go functions.

e For example, let « = 1 and Jy(x) denote the
optimal cost of the N-stage problem, generated
after N DP iterations, starting from some Jy

Jen(@) = min F{g(euw,w) + Ji(f(z,uw))}, Ve

e Typical results for total cost problems:
— Convergence of value iteration to J*:

J () = min Jr(x) = lim Jy(z), Vx

T N — oo

— Bellman’s equation holds for all z:

J (x) = g%]l?)E {g(az,u, w) + J° (f(:v,u, w))}
— Optimality condition: If p(x) minimizes in
Bellman’s Eq., {u, u, ...} is optimal.

e Bellman’s Eq. holds for all deterministic prob-
lems and “almost all” stochastic problems.

e Other results: True for SSP and discounted;
exceptions for other problems.
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“EASY” AND “DIFFICULT” PROBLEMS

e Easy problems (Chapter 7, Vol. I of text)
— All of them are finite-state, finite-control
— Bellman’s equation has unique solution
— Optimal policies obtained from Bellman Eq.
— Value and policy iteration algorithms apply

e Somewhat complicated problems

— Infinite state, discounted, bounded ¢ (con-
tractive structure)

— Finite-state SSP with “nearly” contractive
structure

— Bellman’s equation has unique solution, value
and policy iteration work
e Difficult problems (w/ additional structure)
— Infinite state, g > 0 or g <0 (for all z,u, w)
— Infinite state deterministic problems
— SSP without contractive structure

e Hugely large and/or model-free problems
— Big state space and/or simulation model
— Approximate DP methods

e Measure theoretic formulations (not in this course)

4



STOCHASTIC SHORTEST PATH PROBLEMS

e Assume finite-state system: States 1,...,n and
special cost-free termination state ¢

— Transition probabilities p;;(u)
— Control constraints u € U(i) (finite set)
— Cost of policy © = {uo, p1,...} is

I (1) —]VllinmE{Zg Tk, ok (Tk) | To =i}

— Optimal policy if J-(i) = J*(4) for all s.

— Special notation: For stationary policies m =
{w, p, ...}, we use J,(i) in place of J (7).

e Assumption (termination inevitable): There ex-
ists integer m such that for all policies =:

e Note: We have p = max, pr < 1, since p, de-
pends only on the first m components of .

e Shortest path examples: Acyclic (assumption is
satisfied); nonacyclic (assumption is not satisfied)



FINITENESS OF POLICY COST FUNCTIONS

e View
p=max p, <1

as an upper bound on the non-termination prob.
during 1st m steps, regardless of policy used

e For any n and any initial state i

P{xom #t|xo =i, 7} = P{xom #t|xm #t, xo =1, 7}
X P{xm #t|xo=i,7}<p°

and similarly

P{ka#ﬂxo:i,w}gpk, i=1,...,n

e So F{Cost between times km and (k+1)m —1 }

<mp"” max |g(i,u)|

1=1,...,m
and ueU (1)
(@] <Y mp" Jmax [g(i,u)| = Tmp mmax [g(i, u)]

k=0 uwel (7) weU (i)



MAIN RESULT

e Given any initial conditions Jy(1),..., Jo(n), the
sequence J (i) generated by value iteration,

uwelU(7)

Jr+1(4) = min {g(iau)Jrzpz‘j(u)Jk(j)} , Vi

converges to the optimal cost J*(¢) for each 1.

e Bellman’s equation has J* (i) as unique solution:

J7(5) = min {g(i,U) +sz'j(U)J*(j)} , Vi
J*(t) = 0

e A stationary policy p is optimal if and only
if for every state i, u(:z) attains the minimum in
Bellman’s equation.

e Key proof idea: The “tail” of the cost series,

[©.@)

> E{g(wn pnlz)) }

k=mK

vanishes as K increases to oo.
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OUTLINE OF PROOF THAT Jy — J*

e Assume for simplicity that Jo(z) = 0 for all s.
For any K > 1, write the cost of any policy = as

mK—1 o0
I (w0) = Z E{g(zn, pr(zr)) } + Z E{g(zn, pr(zr)) }
k=0 k=mK
mK-—1 o0
< Z E{g(xk, pr(zr)) } + Z pFmmax|g(i, u)]
k=0 k=K o

Take the minimum of both sides over m to obtain

K
J(x0) < Jmi (x0) + p—mmax|g(7j,u)|.

— pP 1,U

Similarly, we have

K
Imi (o) — %pmmaﬂg(i,uﬂ < J"(x0).
It follows that limx oo Jmk (x0) = J*(z0).

o Jnk(xo) and J,kxik(xo) converge to the same
limit for & < m (since k extra steps far into the
future don’t matter), so Jn(xo) — J*(z0).

e Similarly, Jy # 0 does not matter.



EXAMPLE

e Minimizing the E{Time to Termination}: Let

g(i,u) =1, Vi=1,...,n, uéeU(®)

e Under our assumptions, the costs J* (i) uniquely
solve Bellman’s equation, which has the form

e In the special case where there is only one con-
trol at each state, J*(i) is the mean first passage
time from 7 to ¢. These times, denoted m;, are the
unique solution of the classical equations

mn
m; =1+ E Pijm;, 1=1,...,n,
J=1

which are seen to be a form of Bellman’s equation
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