
Exercise 7.20

(a) This problem is exactly like Example 7.5.3, with the same Bellman’s equation:

1 ∑n 1 n

h∗(i) = min{−bi − λ∗(Ti + ) + pjh∗(j),
r

−λ∗ +
r

j=1

∑
pjh∗(j)

j=1

}

which results in the same optimal policy: accept offer (bi, Ti) if bi λ , where λT is the optimal average
i
≥ − ∗ − ∗

benefit per unit time.

(b) Let us assume without loss of generality that b1 ≤ b2
T T . There are four possible policies: reject both

1 2

types of jobs, accept only type 1 jobs, accept only type 2 jobs, or accept both types of jobs. If we reject
both types of jobs, then the average income per unit time, λ, is 0. This policy cannot be optimal because
both b1 and b2 are positive. If accepting type 1 jobs is optimal, then it must also be optimal to accept type
2 jobs because we have assumed that b1 ≤ b2

T T . Therefore accepting only type 1 jobs is not optimal. Both
1 2

remaining possible policies accept type 2 jobs, so we know it is optimal to accept type 2 jobs. We now find
the average benefit per unit time for both remaining policies.

Reject type 1 jobs, Accept type 2 jobs:

1
h(1) = −λ + p1h(1) + p2h(2)

r
1

h(2) = −b2 − λ(T2 + ) + p1h(1) + p2h(2) = 0
r

rp⇒ −λ = 2b2
1 + rp2T2

Accept type 1 jobs, Accept type 2 jobs:

1
h(1) = −b1 − λ(T1 + ) + p1h(1) + p2h(2)

r
1

h(2) = −b2 − λ(T2 + ) + p1h(1) + p2h(2) = 0
r

rp⇒ −λ = 1b1 + rp2b2
1 + rp1T1 + rp2T2

The latter policy is optimal if and only if:

rp2b2 rp

1 + rp2T2
≤ 1b1 + rp2b2

1 + rp1T1 + rp2T2

b⇔ 2 1 b

T2
≤ (1 + ) 1

rp2T2 T1

b2
T2

The optimal policy accepts offer 2 for any values of r, p1, p2, b1, b2, T1, T2 and accepts offer 1 if and only if
≤ (1 + 1

rp2T
) b1

2 T .
1

Therefore, the optimal average benefit per unit time is equal to rp2b2
1+rp2T2

if (1 + 1
rp2T2

) b1T1
< b2

T and is equal
2

to rp1b1+rp2b2
1+rp1T1+rp2T2

otherwise.

(c) Recall the following about exponential random variables. If X is exponentially distributed with parameter
x and Y is exponentially distributed with parameter y, then min(X,Y ) is exponentially distributed with
parameter x+ y and P (X ≤ Y ) = x

x+y .

Because the system can process more than one job simultaneously, we now augment the state with the
number and types of jobs currently being processed. For the case where m = 2, the state becomes (i, s),



where i is the current job offer being considered and s = 0 if no jobs are currently being processed and s = l

if a job of type l is currently being processed.

If the system is currently processing less than m jobs, then the state changes when the next job offer
arrives. If the system is currently processing m jobs, then the state changes after one job completes and
when the next job offer arrives. In either case, the new state depends on which jobs have already finished
by the time the next job offer arrives.

We have the following Bellman’s equation for m = 2.
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The exponential distribution assumption is necessary because an exponential random variable is mem-
oryless. More specifically, at any point in time, the time until the next job offer (or until a current job
completes) is still exponentially distributed with the same parameter no matter how much time has passed
since the last job offer (or since the job first began).

Exercise 7.22

(a) This is a stochastic shortest path problem with state equal to the number of treasures not yet found.
The termination state is state 0, and we assume that when the state moves to 0, the hunter decides to stop
searching. When the hunter decides to search, the state moves from i to i−m with probability p(m | i).



(b) Bellman’s equation is

J(i) = max

[
i

0, r(i)− c+
∑

p(m | i)J(i−m)

]
, i = 1, . . . , n,

m=0

J(0) = 0.

It has a unique solution because under our assumption p(0 | i) < 1 for all i, the termination state is reached
with probability 1 under all policies, and the assumptions required by the results of Chapter 7 are satisfied.

(c) The policy that never searches has value function Jµ0(i) = 0 for all i. The policy µ1 subsequently produced
by policy iteration is the one that searches at a state i if and only if r(i) > c, and has corresponding value
function

Jµ1(i) =
{

0 if r(i) ≤ c,
r( i
i)− c+ m=0 p(m | i)Jµ1(i−m) if r(i) > c,

Its value function is nonnegative for all i, whic

∑
h can be shown by induction using the value iteration

0 if r(i) c,
Jk+1(i) =

{
≤

r(i)− i
c+ m=0 p(m | i)Jk(i−m) if r(i) > c,

Assuming Jk(i) ≥ 0 for all i, we have Jk+1(i)

∑
≥ 0 for all i. Starting from any J0(i) ≥ 0 for all i, we then

have Jk(i) ≥ 0 for all i, k, meaning its limit is also nonnegative, i.e. Jµ1(i) ≥ 0 for all i.

The next policy is obtained from the minimization

i

µ2(i) = arg max

[
0, r(i)− c+

∑
p(m | i)Jµ1(i−m)

]
, i = 1, . . . , n.

m=0

For i such that r(i) ≤ c, we have r(j) ≤ c for all j < i because r(i) is monotonically nondecreasing in i.
Therefore for i such that r(i) ≤ c, we have Jµ1(i−m) = 0 for all m ≥ 0, so

i

0 ≥ r(i)− c+
∑

p(m | i)Jµ1(i
m=0

−m),

and µ2(i) = stop searching.

For i such that r(i) > c, µ2(i) = search since Jµ1(i) ≥ 0 for all i, so that

i

0 < r(i)− c+
∑

p(m | i)Jµ1(i−m).
m=0

Thus, µ2 is the same as µ1, so it is optimal.

Exercise 7.23

26



Let the state be the current set of wins.

(a)

J∗(0) = min{ci + piJ∗(i) + (1
i

− pi)J∗(0)}

J∗(i) = min{cj + pjJ∗(i, j) + (1 j
=i

− p )J∗(0)
j

}

J∗(i, j) = ck − pkm+ (1− pk)J∗(0) k = i, j

(b) Let J represent the cost-to-go for the stationary policy ijk. Then J satisfies the following set of equations:

J(0) = ci + piJ(i) + (1− pi)J(0)

J(i) = cj + pjJ(i, j) + (1− pj)J(0)

J(i, j) = ck − pkm+ (1− pk)J(0)

Solving the above equations for J(0), the expected cost of policy ijk, we have:

ci + picj + pipjc p
(0) = k
J

− ipjpkm

pipjpk

(c)

λ∗ + h∗(0) = min c
i
{ i + pih∗(i) + (1− pi)h∗(0)}

λ∗ + h∗(i) = min
j=i
{cj + pjh∗(i, j) + (1− pj)h∗(0)}

λ∗ + h∗(i, j) = ck + pk(−m+ h∗(0)) + (1− pk)h∗(0) k = i, j

(d) Let λ represent the average cost-per-stage for the stationary policy ijk. Then λ satisfies the following set
of equations:

λ+ h(0) = ci + pih(i) + (1− pi)h(0)

λ+ h(i) = cj + pjh(i, j) + (1− pj)h(0)

λ+ h(i, j) = ck + pk(−m+ h(0)) + (1− pk)h(0) k = i, j
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Exercise 7.24

(a) Consider the single-policy average cost problem involving the Markov chain with transition probabilities
pij , and cost at state i equal to yi, i = 1, . . . , s. Assume without loss of generality that state 1 is a recurrent
state. Since there is only one recurrent class, assumption 7.4.1 is satisfied. Thus y is the average cost
per stage (common for all states) and solves uniquely, together with scalars h(i), i = 1, . . . , s, Bellman’s
equation, which is ∑s

y + h(i) = yj + pijh(j), i = 1, . . . , s,
j=1

h(1) = 0.

(b) The states of the problem are of two types:

(1) Pairs (current offer wk, current value of yk). These are the m · s states where the house is still being
rented, and there is a choice whether to accept or reject the current offer. The reward in these states is
R if the offer is rejected, and is ykwk if the offer is accepted.

(2) Pairs (price at which the house has been sold wk, current value of yk). These are the m · s states that
occur after the house has been sold. The value of wk stays constant when transitioning from these states,
and the value of yk evolves according to the transition probabilities pij . The reward in these states is
ykwk.

There are two types of stationary policies: (i) The policy that never sells, which is optimal if and only
if R ≥ wiy for all possible values of the offers wi. (ii) A policy that sells for some pairs (current offer wk,
current value of yk) but not for others. The average cost per stage then is wy where w is the sale price. Thus
the value of yk does not matter in accepting the current offer. Clearly, among these policies, the optimal one
sells when the price has reached its maximum (which will happen with probability 1) and the corresponding
average cost per stage is wy. Thus, even if the maximum offer is extremely rare, it is optimal to wait for it.

The average cost formulation is not satisfactory because alot of counterintuitive transient behavior would
be optimal. For example, a (nonstationary) policy that rejects all offers up to a certain (arbitrarily large)
time period and then waits to accept the maximum offer is also optimal. So the average cost formulation
does not provide any penalty for delaying a sale decision, even when the current value of yk is favorable and
the current offer is high but not maximal.
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(c) Let the state be (wk, yk, r), where r = 0 means the house is being rented and r = 1 means the house has
been sold. We then have the following Bellman’s equation for i = 1, 2, . . . ,m, j = 1, 2, . . . , s:

m s s

J∗(i, j, 0) = max{R+ α
∑∑

qkp iyjjlJ∗(k, l, 0), w + α
∑

pjlJ∗(i, l, 1)︸ k=1 l=1

rej

︷︷ l=1

},

ect

︸ ︸
sel

︷︷
l

s

︸
J∗(i, j, 1) = wiyj + α

∑
pjlJ∗(i, l, 1).

l=1

Let y(j) be the unique solution to y(j) = s
yj + α

∑
l=1 pjly(l) for j = 1, 2, . . . , s (which exists because the yj

are bounded for all j and there are s equations with s unknowns). Let J(i, j, 1) = wiy(j), and plug it into
the righthandside of Bellman’s equation for r = 1:

s

J∗(i, j, 1) = wiyj + α
∑

pjlJ∗(i, l, 1)
l=1

s

= wiyj + α
∑

pjlwiy(l)
l=1

s

= wi(yj + α pjly(l))
l=1

= wiy(j)

∑

Because J satisfies Bellman’s equation, J is the optimal cost-to-go, so J∗(i, j, 1) = wiy(j). Plugging this
into the righthandside of Bellman’s equation for r = 0:

m s s

J∗(i, j, 0) = max{R+ α
∑∑

qkp i
jlJ∗(k, l, 0), w yj + α

∑
pjlJ∗(i, l, 1)

k=1 l=1 l=1

}

m

= max{R+ α
∑∑s s

qkpjlJ∗(k, l, 0), wiyj + α
∑

p wijl y(l)
k=1 l=1 l=1

}

m s s

= max{R+ α
∑∑

qkpjlJ∗(k, l, 0), wi(yj + α pjly(l))︸ k=1 l=1

∑
l=1

}

reject sell

The optimal policy is therefore to accept an offe

︷︷
r if and only if

︸ ︸ ︷︷ ︸

R+ α
wi ≥

∑m
k=1

∑s∑l=1 q
kpjlJ∗(k, l, 0)

s = T (j).
yj + α l=1 pjly(l)

(d) We assume that p 1
ij = pj for all i and y < y2 < . . . < ys.
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i. We have the following expression for the threshold:

m
R+ α kp

( ) =
∑
k=1

∑s
l=1 q lJ∗(k, l, 0)

T j
yj + s

α l=1 ply(l)

Notice that in the expression above for T (j), both the

∑
numerator and the second term in the denominator

are constant with respect to j. Because yj is monotonically increasing in j, we have T (j) is monotonically
decreasing in j. So the higher the yield yk, the lower the threshold for wk, and the more likely we are to
accept an offer.

ii. Consider any base policy. Denote its cost-to-go when renting as Jbase(i, j, 0). The corresponding rollout
policy accepts at state (wi, yj) if and only if

R+ α
wi ≥

∑m
k=1

+

∑s∑ k
l=1 q plJbase(k, l, 0)
s .

yj α l=1 ply(l)

Once again, the righthandside of the above inequality is monotonically decreasing in j. Therefore, policy
iteration, when started with a policy of monotonically decreasing thresholds (or any policy in general),
generates a sequence of policies with monotonically decreasing thresholds.

Exercise 7.25

(a) Let the state be the current consecutive number of days parked on the street. Because there exists m
such that pmT > G, there exists n, where n is the smallest integer j such that pjT > G. Because we would
never park on the street if its expected cost were more than parking in the garage, we may define the state
space as {0, 1, . . . , n}, which is finite, and still find the optimal policy for the problem with infinite state
space {0, 1, . . .}.

J∗(i) = min[G+ αJ∗(0), pi+1T + αJ∗(i+ 1)] i = 0, 1, . . . , n− 1

J∗(n) = G+ αJ∗(0)

(b) Use VI to show J∗(i) is monotonically nondecreasing in i, and therefore the optimal policy has a
threshold form: park on the street if i ≤ i∗ and park in the garage if i > i∗. Assume Jk(i) is monotonically
nondecreasing in i. We find Jk+1 according to:

min[G+ αJ (0), p T + αJ (i+ 1)] i = 0, 1, . . . , n 1
Jk+1(i) =

{
k i+1 k −

G+ αJk(0) i = n
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Because pi+1 and Jk+1(i) are monotonically nondecreasing in i, we know the righthand-side of the minimiza-
tion is nondecreasing in i, meaning Jk+1(i) is nondecreasing for i < n. We also have

Jk+1(n− 1) = min[G+ αJk(0), pnT + αJk(n)] ≤ G+ αJk(0) = Jk+1(n)

Therefore, Jk+1(i) is monotonically nondecreasing in i for all i. Starting from any J0(i) that is monotonically
nondecreasing, we have by induction that Jk(i) monotonically nondecreasing in i for all k, meaning J∗(i) =
limk J→∞ k(i) is monotonically nondecreasing in i.

(c) We show if we start policy iteration with a threshold policy, then we generate a sequence of threshold
policies, meaning policy iteration takes no more than n, the number of possible thresholds, iterations.

Consider the policy that parks on the street at state i if and only if i ≤ m, where m ≤ n − 1. Then we
have the following corresponding cost-to-go:

p T + αJ (i+ 1), i m
Jm(i) =

{
i+1 m ≤
G+ αJm(0), i > m

Letting G+ αJm(0) = c, we have the following rollout policy for i = 0, 1, . . . , n− 1:

µr(i) = argmin[c, pi+1T + αJm(i+ 1)]

Consider the case where Jm(m) ≤ c:

We show that Jm(i) is monotonically nondecreasing in i. For i > m, we have Jm(i) = c which is constant.
For i ≤ m, recall for this case we have Jm(m) ≤ c = Jm(m+ 1), which provides a base case for showing that
Jm(i) ≤ Jm(i+ 1) for i ≤ m. Assuming for induction that Jm(i) ≤ Jm(i+ 1), we have

Jm(i− 1) = piT + αJm(i) ≤ pi+1T + αJm(i+ 1) = Jm(i).

Therefore Jm(i) is monotonically nondecreasing in i for all i, meaning the right-handside of the rollout
policy minimization is monotonically nondecreasing in i, and the rollout policy has a threshold form.

Consider the case where Jm(m) > c:

Re-expressing the rollout policy using Bellman’s equation for Jm(i), we have:

µr(i) = ar{ gmin[c, pi+1T + αJm(i+ 1)]
argmin[c, pi+1T + αc] i ≥ m=
argmin[c, Jm(i)] i < m

Assume for contradiction there exists ī such that the rollout policy parks in the garage at ī and on the
street at ī+ 1.

If ī ≥ m, we have c ≤ pī+1T + αc and c > pī+2T + αc, which contradicts that pī+1 ≤ pī+2.

We know ī = m − 1 because we have assumed Jm(m) > c, which means the rollout policy parks in the
garage at m.

If ī < m − 1, we have c < Jm(̄i) and c ≥ Jm(̄i + 1), meaning Jm(̄i) > Jm(̄i + 1). Because c ≥ Jm(̄i + 1)
and c < Jm(m), there exists j such that ī < j < m and Jm(j) ≤ Jm(j + 1). By the induction proof in the
previous case, we then know Jm(i) ≤ Jm(i+ 1) for i ≤ j, which contradicts Jm(̄i) > Jm(̄i+ 1).
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Therefore, no such ī exists, and if the rollout policy parks in the garage at i, then it parks in the garage
at all states j > i, which is a threshold policy.

(d) As for the discounted cost version, we may consider only states {0, 1, . . . , n}. State 0 is recurrent under
all policies, so we may apply Bellman’s equation:

λ∗ + h∗(i) = min[G+ h∗(0), pi+1T + h∗(i+ 1)], i = 0, 1, . . . , n− 1,

λ∗ + h∗(n) = G+ h∗(0),

h∗(0) = 0.

Exercise 7.26

(a) Let the set of possible offers be {xi|i = 1, . . . , n}∪{t, r}, where being in a state has the following meaning:

xi: receiving offer si; t: overtaken; r: retired.

Define the control space by {A(accept offer), I(invest), R(retire)}. The state r is absorbing, and for the other
states, the set of admissible controls is

U(xi) = {A,R}, U(t) = {I,R}.

Define the corresponding transition probabilities, and per-stage costs as described in the problem. Bellman’s
equation for α < 1 is

n

J∗(xi) = max

si, α
(1− β)

∑
pjJ∗(xj) + βJ∗(t)

 , (1)
j=1

J∗(t) = max

0,−v + α


nγ∑ pjJ∗(xj) + (1
j

− γ)J∗(t) .
=1

 (2)

(b) From Eq. (1), we see that since the second term in the minimization of the right-hand side does not
depend on the current state xi, the optimal policy is a threshold policy at states xi, i = 1, . . . , n. From Eq.
(2), we see that once the inventor has been overtaken, it is either optimal to retire immediately, or to keep
investing until his mouse trap is improved.
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(c) Even without discounting, all policies have finite total cost, except the one that never sells and always
invests, which incurs infinite total cost. Thus, we see that under the average cost criterion, all of the finite
total cost policies will be optimal. Thus, the average cost criterion does not discriminate enough between
different policies and makes no sense.

(d) Since there is no discounting and v = 0, there is no penalty for waiting as long as necessary until the
maximum possible offer is received, which is going to happen with probability 1. So a stochastic shortest
path formulation makes limited sense, since it excludes from consideration all offers except the maximum
possible, no matter how unlikely this maximum offer is.
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