
Exercise 7.3

(a) Given that he is in state 1, the manufacturer has two possible controls:

µ(1) ∈ U(1) = {A : advertise, Ā : don’t advertise}

Given that he is in state 2, the manufacturer may apply the controls:

µ(2) ∈ U(2) = R : research, R̄{ : don’t research}

We want to find an optimal stationary policy, µ, such that Bellman’s equation is satisfied. That is, µ should
solve:

J(i) = maxE g(µ(i)) + αJ(j) i = 1, 2
µ j

where j is the state following the application

{
of µ(i) at state

}
i. We can obtain the minimum by solving

Bellman’s equation for each possible stationary policy and comparing the resulting costs.

For µ1 = (A,R):

J1(1) = 4 + α[.8J1(1) + .2J1(2)]

J1(2) = −5 + α[.7J1(1) + .3J1(2)]

Letting J̄1 = [J1(1) J1(2)]′, we can write:

=
[

4
5

]
α

[
.8 .2

J̄1 + J̄1
− .7 .3

]
Finally, then: ( [
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])−1 4¯ . .

J1 = I − α
.7 .3

[
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]

For µ2 = (A, R̄), we similarly obtain:

.2

( [
8 .2 −

J̄ = I − α
.4 .6

]) 1 [ 4
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For µ3 = (A,¯ R):
5 .

−1
. 5 6

J̄3 =
(
I − α

[
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]
For µ4 = (A,¯ R̄):

J̄4 =
(
I − α

[
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.4 .6

])−1 [ 6
−3

]
[

1As α − p p→ 1, we have for any matrix M =
q 1− q

]
:

1 1 α+ αq αp 1 q p(I − αM)−1 = −
(1− α)(1− α+ α(p+ q))

[
αq 1 α+ αp

]
→− δ(p+ q)

[
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]
where δ = 1− α. Thus, as α→ 1:
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J̄ = , J̄ =
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]
Thus, the optimal stationary policy is the shortsighted one of not advertising or researching.
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[
1− p pAs α→ 1, we have for any matrix :
q 1− q

]
1 q p(I − αM)−1 →

δ(p+ q)

[
q p

]
where δ = 1− α. Thus, as α→ 1:

1 1
J̄

/ 1 / 1
1

[
2 5 12=
]
, J̄2 3 1= , J̄3 17= , J̄4 =

δ 2 δ

[
5/3

]
δ

[
17/12

]
δ

[
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]
Thus, the optimal policy is the farsighted one to advertise and research.

(b) Using policy iteration: Let the initial stationary policy be µ0(1) = Ā (don’t advertise), µ0(1) = R̄ (don’t
research). Evaluating this policy yields

Jµ0 = (I − αPµ0)−1gµ0 =
(
I − 0.9

[ 1
.5 .5
.4 .6

])− [
6
−3

]
≈
[

15.49
5.60

]
.

The new stationary policy satisfying Tµ1Jµ0 = TJµ0 is found by solving

2

µ1(i) = arg max[g(i, u) + α
∑

pij(u)Jµ0(j)].
j=1

We then have

µ1(1) = arg max[4 + 0.9(0.8Jµ0(1) + 0.2Jµ0(2)), 6 + 0.9(0.5Jµ0(1) + 0.5Jµ0(2))]

= arg max[16.2, 15.5]

= A.

Similarly,

µ1(2) = arg max[−5 + 0.9(0.7Jµ0(1) + 0.3Jµ0(2)),−3 + 0.9(0.4Jµ0(1) + 0.6Jµ0(2))]

= arg max[6.27, 5.60]

= R.

Evaluating this new policy yields ( [
8 2

])−1
. .

Jµ1 = I − 0.9
.7 .3

[
4
−5

]
22≈
[

.20
12.31

]
.

Attempting to find another improved policy, we see that

µ2(1) = arg max[4 + 0.9(0.8Jµ1(1) + 0.2Jµ1(2)), 6 + 0.9(0.5Jµ1(1) + 0.5Jµ1(2))]

= arg max[22.20, 21.53]

= A,
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and

µ2(2) = arg max[−5 + 0.9(0.7Jµ1(1) + 0.3Jµ1(2)),−3 + 0.9(0.4Jµ1(1) + 0.6Jµ1(2))]

= arg max[12.31, 11.64]

= R.

Since Jµ1 = TJµ1 , we’re done. The optimal policy is thus µ = (A,R).

The linear programming formulation for this problem is

minλ1 + λ2

subject to

λ1 ≥ 4 + 0.9[0.8λ1 + 0.2λ2]

λ1 ≥ 6 + 0.9[0.5λ1 + 0.5λ2]

λ2 ≥ −5 + 0.9[0.7λ1 + 0.3λ2]

λ2 ≥ −3 + 0.9[0.4λ1 + 0.6λ2].

By plotting these equations or by using an LP package, we see that the optimal costs are J∗(1) = λ∗1 = 22.20
and J∗(2) = λ∗2 = 12.31.
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Exercise 7.5

(a) Define three states: {(s, r) : the umbrella is in the same location as the person and it is raining, (s, n) :
the umbrella is in the same location as the person and it is not raining, and o : the umbrella is in the other
location}. In state (s, n), the person makes the decision whether or not to take the umbrella. In state (s, r),
the person has no choice and takes the umbrella. In state o, the person also has no choice and does not take
the umbrella. Bellman’s equation yields

J(o) = pW + αpJ(s, r) + α(1− p)J(s, n)

J(s, r) = αpJ(s, r) + α(1− p)J(s, n)

J(s, n) = min[αJ(o), V + αpJ(s, r) + α(1− p)J(s, n).

An alternative is to use the following two states are: {s : the umbrella is in the same location as the
person, o : the umbrella is in the other location}. In state s, the person takes the umbrella with probability
p (if it rains) and makes a decision whether or not to take the umbrella with probability 1− p (if it doesn’t
rain). In state o, the person has no decision to make. Bellman’s equation yields

J(o) = pW + αJ(s)

J(s) = pαJ(s) + (1− p) min[V + αJ(s), αJ(o)]

= min[(1− p)V + αJ(s), pαJ(s) + (1− p)αJ(o)].

(b) In the two-state formulation, since J(o) is a linear function of J(s), we need only concentrate on min-
imizing J(s). The two possible stationary policies are µ1(s) = {T : take umbrella} and µ2(s) = {L :
leave umbrella}.

For µ1, we have

J1(s) = (1− p)V + αJ(s)
(1

=
− p)V

.
1− α

For µ2, we have

J2(s) = pαJ(s) + (1− p)αJ(o)

= pαJ(s) + (1− p)α[pW + αJ(s)]
(1

=
− p)pW

.1 − pα − (1− p)α

So the optimal policy is to take the umbrella whenever possible if

J1(s) < J2(s),
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or when
(1− p)V (1

<
− p)pW

.
1− α 1 p p αα − − (1− )

This expression simplifies to
V
α (1 + α)

p > .
W + V

Using the three-state formulation, we see from the second equation that

1
J(s, n) =

− αp
J(s, r).

α(1− p)

Then, the other two equations become
J(o) = pW + J(s, r)

and
J(s, n) = min[αJ(o), V + J(s, r)].

J(o) and J(s, n) are linear functions of J(s, r) so again, we can just concentrate on minimizing J(s, r) via
the equation

1− αp
J(s, r) = min[αJ(o), V + J(s, r)].

α(1− p)

Using the same process as in the two-state formulation, we get the same result.

Exercise 7.7

Suppose that Jk(i+ 1) ≥ Jk(i) for all i. We will show that Jk+1(i+ 1) ≥ Jk+1(i) for all i. Consider first the
case i+ 1 < n. Then by the induction hypothesis, we have

c(i+ 1) + α(1− p)Jk(i+ 1) + αpJk(i+ 2) ≥ ci+ α(1− p)Jk(i) + αpJk(i+ 1). (1)

Define for any scalar γ,
Fk(γ) = min

[
K + α(1− p)Jk(0) + αpJk(1), γ .

Since Fk(γ) is monotonically increasing in γ, we have from Eq. (1),

]
Jk+1(i+ 1) = Fk

(
c(i+ 1) + α(1− p)Jk(i+ 1) + αpJk(i+ 2)

≥ Fk
(
ci+ α(1− p)Jk(i) + αpJk(i+ 1)

)
= Jk+1(i).

)
Finally, consider the case i+ 1 = n. Then, we have

Jk+1(n) = K + α(1− p)Jk(0) + αpJk(1)

≥ Fk
(
ci+ α(1− p)Jk(i) + αpJk(i+ 1)

= Jk+1(n− 1).

)
The induction is complete.
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Exercise 7.8

A threshold policy is specified by a threshold integer m and has the form

Process the orders if and only if their number exceeds m.

The cost function corresponding to a threshold policy specified by m will be denoted by Jm. By Prop.
3.1(c), this cost function is the unique solution of system of equations

K + α(1 p)J (0) + αpJ (1) if i > m,
Jm(i) =

{
− m m (1)

ci+ α(1− p)Jm(i) + αpJm(i+ 1) if i ≤ m.

Thus for all i ≤ m, we have
ci+ αpJ i

m(i) = m( + 1)
J ,

1− α(1− p)

c(i 1) + αpJm(i)
Jm(i 1) =

−− .
1− α(1− p)

From these two equations it follows that for all i ≤ m, we have

Jm(i) ≤ Jm(i+ 1) ⇒ Jm(i− 1) < Jm(i). (2)

Denote now
γ = K + α(1− p)Jm(0) + αpJm(1).

Consider the policy iteration algorithm, and a policy µ that is the successor policy to the threshold policy
corresponding to m. This policy has the form

Process the orders if and only if

K + α(1− p)Jm(0) + αpJm(1) ≤ ci+ α(1− p)Jm(i) + αpJm(i+ 1)

or equivalently
γ ≤ ci+ α(1− p)Jm(i) + αpJm(i+ 1).

In order for this policy to be a threshold policy, we must have for all i

γ ≤ c(i− 1) + α(1− p)Jm(i− 1) + αpJm(i) ⇒ γ ≤ ci+ α(1− p)Jm(i) + αpJm(i+ 1). (3)

This relation holds if the function Jm is monotonically nondecreasing, which from Eqs. (1) and (2) will be
true if Jm(m) ≤ Jm(m+ 1) = γ.

Let us assume that the opposite case holds, where γ < Jm(m). For i > m, we have Jm(i) = γ, so that

ci+ α(1− p)Jm(i) + αpJm(i+ 1) = ci+ αγ. (4)

We also have
cm+ αpγ

Jm(m) = ,
1− α(1− p)

from which, together with the hypothesis Jm(m) > γ, we obtain

cm+ αγ > γ. (5)
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Thus, from Eqs. (4) and (5) we have

ci+ α(1− p)Jm(i) + αpJm(i+ 1) > γ, for all i > m, (6)

so that Eq. (3) is satisfied for all i > m.

For i ≤ m, we have ci+ α(1− p)Jm(i) + αpJm(i+ 1) = Jm(i), so that the desired relation (3) takes the
form

γ ≤ Jm(i− 1) ⇒ γ ≤ Jm(i). (7)

To show that this relation holds for all i ≤ m, we argue by contradiction. Suppose that for some i ≤ m we have
Jm(i) < γ ≤ Jm(i−1). Then since Jm(m) > γ, there must exist some i > i such that Jm(i−1) < Jm(i). But
then Eq. (2) would imply that Jm(j−1) < Jm(j) for all j ≤ i, contradicting the relation Jm(i) < γ ≤ Jm(i−1)
assumed earlier. Thus, Eq. (7) holds for all i ≤ m so that Eq. (3) holds for all i. The proof is complete.

Exercise 7.10

(a) The states are si, i = 1, . . . , n, corresponding to the worker being unemployed and being offered a salary
wi, and s̄i, i = 1, . . . , n, corresponding to the worker being employed at a salary level wi. Bellman’s equation
is

J(si) = max


nc+ α
∑

ξ j i i
jJ(s ), w + αJ(s̄ )

 , i = 1, . . . , n, (1)
j=1

J(s̄i) = wi + αJ(s̄i), i = 1, . . . , n, (2)

where ξj is the probability of an offer at salary level wj at any one period.

From Eq. (2), we have
wi

J(s̄i) = i = 1, . . . , n,
1− α

so that from Eq. (1) we obtain

J(si) = max


i

c
∑n

+

 w
α ξjJ(sj),

1
j=1

− α
 ,

Thus it is optimal to accept salary wi if

wi ≥ (1− α)


nc+ α
∑

ξjJ(sj)
j=1

 .

The right-hand side of the above relation gives the threshold for acceptance of an offer.

(b) In this case Bellman’s equation becomes

J(si) = max


nc+ α
∑ n

ξ j i i j
jJ(s ), w + α (1 pi)J(s̄ ) + pi ξjJ(s ) (3)

j=1

 −
∑
j=1


n

J(s̄i) = wi + α

(1− pi)J(s̄i) + pi
∑

ξjJ(sj)
j=1

 . (4)
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Let us assume without loss of generality that

w1 < w2 < · · · < wn.

Let us assume further that pi = p for all i. From Eq. (4), we have

wi + n
p

J(s̄i) = j=1 ξjJ(sj)
,

1−

∑
α(1− p)

so it follows that
J(s̄1) < J(s̄2) < · · · < J(s̄n). (5)

We thus obtain that the second term in the maximization of Eq. (3) is monotonically increasing in i, implying
that there is a salary threshold above which the offer is accepted.

In the case where pi is not independent of i, salary level is not the only criterion of choice. There must
be consideration for job security (the value of pi). However, if p i

i and w are such that Eq. (5) holds, then
there still is a salary threshold above which the offer is accepted.

Exercise 7.11

Using the notation of Exercise 7.10, Bellman’s equation has the form

λ+ h(si) = max


nc+
∑ n

ξ h(si), wi j
j + (1− pi)h(s̄i) + pi

∑
ξjh(s )

 , i = 1, . . . , n, (3)
j=1 j=1

n

λ+ h(s̄i) = wi + (1− pi)h(s̄i) + p j
i

∑
ξjh(s ), i = 1, . . . , n. (4)

j=1

From these equations, we have

n

λ+ h(si) = max

c+
∑

ξjh(sj), λ+ h(s̄i)

 , i = 1, . . . , n,
j=1

so it is optimal to accept a salary offer wi if h(s̄i) is no less that the threshold

n

c− λ+
∑

ξjh(sj).
j=1

Here λ is the optimal average salary per period (over an infinite horizon). If pi = p for all i and w1 < w2 <

· · · < wn, then from Eq. (4) it follows that h(s̄i) is monotonically increasing in i, and the optimal policy is
to accept a salary offer if it exceeds a certain threshold.
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