Solution 4

Exercise 6.2

a) Consider the CEC applied to this problem. At stage 1 we solve the deterministic problem:

rr&m 0+ Ja(z2)) = I’I&in lz2|| = n;in |21 + bur + dw ]|

= min ||z1 + bu|.
ul

Thus, pj(z1) = —1 (i.e. the first coordinate of 1), and the optimal cost to go is Ji(z1) = H 22 (where

1

x% is the second coordinate of x1).

At stage 0 we solve the deterministic problem:
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S0 po is unconstrained. We choose p(0) =0

The corresponding cost of the CEC is:

E{llz2l} = E{llzo + bug(0) + dwo + bui(zo + bug(0) + dwo) + dwi ||}
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Using the probability distribution of wo and ws, it is straightforward to obtain E{|z2|} = 1.

b) Consider the open-loop optimal policy. Here we solve the problem:

min F{|[zz]} = min E{||lzo + b(uo + u1) + d(wo + w1)|}-
up,U1 Up,u1

For the given values of xg, b and d, and the probability distribution of wg and w;, the problem is written as:

min — .
Up,uU1 4
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It is straightforward to check that the minimum is attained when up + w1 = 0, in which case we obtain
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the optimal open loop cost as:
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Therefore, the CEC is strictly suboptimal.
c¢) Consider the closed-loop optimal policy. Here:

Jo(0) = min {1 min {1
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Using the figure from part b., it is seen that the optimal value is to take u; so that ug + w3 = 0 and the

ug +up — 1 1
-2 2

same optimal value as in the open-loop case is obtained.



Exercise 6.10

Consider the example in which r(z(t)) = 1, 2(0) = (0,0), and x(T) = (a,b). Then minimizing

/OTr(a:(t))dt

over the control constraint ||u(¢)|| = 1 corresponds to finding the shortest trajectory from z(0) to z(T).
The solution to this problem is clearly a straight line from (0,0) to (a,b), which yields a distance v/a2 + b2.
However, the discretization provided does not approach this distance if ¢ and b are both nonzero. The
discretization provided only allows moves in vertical and horizontal directions, and thus the shortest distance

becomes a + b, regardless of the discretization size A.

Exercise 6.16

By substituting Dy, = pk for G, = (p(2 — p))* into the derivation on pps. 319-320, we have R, = p(2 —
P)Ri—1 4+ p?2Dy_1(1 — Rix—1), with Ry = 1. Dividing both sides by Dy = pDjy_1, we have:

Ry R4
— =(2 - + p(1 — Ry _
Dy, ( p)Dk—l p( k—1)

As k — 00, Dy, — 0, meaning Ry — 0 also. So we obtain for large N:

Ry

P =02 =)

Because 2 —p > 1, g—z increases exponentially with k.
Exercise 6.20

(a) Prop.6.3.1: Assume that for all z; and k, we have

min max Ik (T, ks wi) + jk+1(fk($k7ukawk))} < Ji(z). (1)
up €U (xg) Wk EWk (Tk,uk)
Then the cost-to-go functions corresponding to a one-step lookahead policy that uses jk and Ug(xy)

satisfy for all zx and k

Te(w) < min o max e uwe) + i (fu(@n ue )] (2)
ukEUk(Ik)kaWk(mkvuk)

We define

Je(zx) = min max [gk(xmu;wwk) + jk—#—l(fk(l'kvuhwk))}
ukEUk((L‘k)kaWk(mkvuk)

and through a backward induction approach similar to that in Prop.6.3.1, the above conclusion in (2) can
be proved.

Prop.6.3.2: Let Ji(z),k = 0,1,..., N, be functions of ), with Ji(zn) = gn(zy) for all zy, and let
7 ={fy, -+, Hn_1} be a policy such that for all z; and k, we have

max [9k<33k; Uk, W) + jk-i—l(fk(l'hukawk))] < Jp(x) + 0%, (3)
wi, €W (g ,ur)
where 99, d1,--+,0n_1 are some scalars. Then for all x; and k, we have
N N-1
Tri(ar) < Ji(x) + Y i, (4)
i=k

where Jr i (z1) is the cost-to-go of 7 starting from state zj at stage k. Through a backward induction

approach similar to that in Prop.6.3.2, the above conclusion in (4) can be proved.

(b) In a rollout algorithm, since for all 2 and k we haveuy,(z) € Uk (zx), the assumption in (1) is satisfied
and the desired result directly follows (2).
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