Solution for homework 3

Exercise 5.2

a) We have a linear-quadratic problem with imperfect state information. Thus the optimal control law is:
po L) = Ly E{w | I},

where Ly, is a gain matrix given by the Riccatti formula. Since the system and cost matrices
Ay, B, Qr, Ry, are all equal to 1:

Ly = —(Rk + Bi'Ki41B) 1 B} Kj 1 Ay

and with Ky =1,

Ky, = Ay [Kit1 — K1 Bi(Ri + By’ K1 Bi) " B K1) Ak + Qk
142K
1+ Kpy1

For this particular problem, F{zy | I} can be calculated easily and is equal to the exact value of the state
xg. To see this note that given xj and Ijq:
Zk+1 = Th41 + Vg1 = Tk + Uk + Wk + Vet 1-
So
Zk+1 — Uk — Tk = Wk + V1.

Now wy, + vg41 can take on four possible values: +1 + i. If at time k + 1 the known value zj1 — up — xk
comes out to be 1 j:% then we know that wy = 1 and zy 1 = zr +ug +1 becomes known. If zp 41 —up — g
comes out to be —1 + i then we know that wy = —1 and xx11 = 2 + uxr — 1 becomes known. Also note

that, given zo, we can compute the exact value of z9. Thus the estimator for E{xy | I;;} is given by:

2, ifz=2+1
E{x°|10}:{—2 ifog= 241

E{xk|fk}+uk+1, ika+17E{xk|Ik}7uk:1:ti

E{@pi | Do} = {E{xk | I} +up — 1, if zp — E{og [T} —ue = -1+ % '

An alternative approach to compute E{xy | I} is based on the fact that:
k—1 k—1
T — Zul =x0 + Zwl € Integers
i=0 i=0

since xo and wy, take on integer values. So we have:
k—1 k—1 1
2k — 2% =Tk —Zoui + v, € Integer + 1
= i=

Thus the estimator will be the true value of 2 which is the nearest integer to zx — > u; plus Y u;.



Exercise 5.7

a) We have
pi_ﬂ = P(Tk11 =17 | 20, -+ Zkt1, U0, - - -, Uk)
= P(xpr1 =7 | Ir41)
P(xit1 =7, 2k41 | Tr, ur)
P21 | Ir, ur)

i Plar=0)P(arir = j | o = b, ue) P24 | s o1 = )

doaey iy Plar = ) P(zpyr = s | @p = 4, up) P24 | ug, Thg1 = )
_ Doy Pipig (ur)ry (un, Zri1)

o > Pipis(uk)rs(uk, Zh41)




Rewriting p;_, ; in vector form, we have

plo =T (wr, zk41) [P (uk) Prly i1
wH ZZ:I Ts(ukv Zk+1)[P(uk)/Pk]s ’ ’

.

Therefore,
[r (g, z1)] * [P (ug) Py
r(uk, zk+1)’P(uk)’Pk

Piy =

b) The DP algorithm for this system is:

jN—l(PN 1) mln{ZpN 12]% w)gn-1(i,u ])}
= mgn {Zpl}v—l [GNl(u)]z}

i=1

= m&n{P]’V_lGNfl(u)}

Ji(Py) —mln{ZkapU w) g (4, u, j —|—2kasz Z u,0)Jxs1(Pes1 | Pr,u, 9)}

=1

= min (.6 Py Py | 7005 [P P
= mi {P Gk +ez::1 9 P P}ch+1[ T(U,G)IP(U)IPk :|}

c) For k=N —1,

ijl()‘P]/V—l) = muin{)\P]l\r_lGNfl('U/)}

= muin{z Aply_1 [Gr-1(u)]}

i=1

= rnuin{)\ Zpﬁv_l[GN—l(U)]i}

=1

=\ muin{Zpﬁv_l [Gn-1(uw)i}

i=1

= /\muin{Zpﬁvfl[GNfl(u)]i}

i=1

= AIn_1(Pn-1).

Now assume Ji(APg) = AJy(Py). Then,

q
Jkl(AP,gl)zmin{APk 1Groa(u) + > r(u, 0) P(u) APy 1 Ji(Py| Pe1, u, 9)}
=1
q —
= min{)\Pk 1Gk 1 -‘r)\ZT U, 9 'P /Pk_le(Pk|Pk_1,u,9)}
u
6=1

q
_)\mm{Pk 1Gk 1 +ZTU G/P ’Pk 1Jk(Pk‘Pk 1, U, 9)}
=1

= M1 (Pe_1). Q.ED.



For any u, r(u,0) P(u)' Py is a scalar. Therefore, letting A = r(u, 0)’ P(u)’' Py, we have

T, = min / y r(u,0) / [r(u, 0)] * [P(u)' Py}
Ji(Py) = mi {P Gr(u +; 0)'P(u) P+ 1{ r(u,8) P(u)' Py, }}

P Gk [P(u)’Pk])

= mln

?MQ

d) For k=N — 1, we have Jy_1(Py_1) = min, [Py _,Gn-1(u)], and so JN—1(Pn_1) has the desired form
IN_1(Pn_1) = mln[PN 101}\, 1ree- ,PJ'V_la?\}_l],

where ozg\,_l = Gn-1(w) and uJ is the jth element of the control constraint set.
Assume that

Jet1(Pryr) = min [P a0, PLgotT].

Then, using the expression from part (c) for Ji(Py),

Ji(Py) = min | P{G(u) +

>
0=1
= min | PGy (u) + Z  min [{[r(u, 0)] * [P(u)/Pk]}/a};“H”
0=1
>

= min | P[G(u) +

L 0=1
i q
= min | P ¢ Gy (u) + ;1 o [P(u)r(u,0) e ]
=min [Plag, ..., Plaj*],
where o , ..., o) are all possible vectors of the form
q
Gr(u) + Z P(u)r(u,0) a,',
6=1
as u ranges over the finite set of controls, 6 ranges over the set of observation vector indexes {1,...,q}, and
My ranges over the set of indexes {1,...,mg41}. The induction is thus complete.

For a quick way to understand the preceding proof, based on polyhedral concavity notions, note that
the conclusion is equivalent to asserting that Ji(Py) is a positively homogeneous, concave polyhedral func-
tion. The preceding induction argument amounts to showing that the DP formula of part (c) preserves
the positively homogeneous, concave polyhedral property of Jxi1(Pgx+1). This is indeed evident from the
formula, since taking minima and nonnegative weighted sums of positively homogeneous, concave polyhedral

functions results in a positively homogeneous, concave polyhedral function.



Exercise 5.14

a) The state is (zg, di ), where xy, is the current offer under consideration and dj, takes the value 1 or 2 depending
on whether the common distribution of the system disturbance, wy, is F1 or F». The variable dy, stays constant
(i.e., satisfies dg+1 = d for all k), but is not observed perfectly. Instead, the sample offer values wo, w1, ...
are observed (wg = k1), and provide information regarding the value of di. In particular, given the a priori
probability ¢ and the demand values wo, ..., wr_1, we can calculate the conditional probability that wy will
be generated according to Fj.

b) A suitable sufficient statistic is (xg, gx), where
qx = P(dk =1 | wo,...,wk_l).
The conditional probability ¢ evolves according to

qiF1 (wy)
g1 (wi) + (1 — gr) Fo(wy)’

qk+1 = dgo =4,

where F;(wy) denotes probability under the distribution F;, and assuming that wy can take a finite number
of values under the distributions F} and Fy. Let w!,w?,...,w™ be the possible values wy can take under
either distribution.

We have the following DP algorithm:
JIn(zN,qN) = N

Jr(2k, qr) = max [(1 + ) N=kgp, E{ Joy1(Th1, Qk+1)}}

=max |(1+r)N-Fkgy,

n

R Y (P o = v ]

As in the text, we renormalize the cost-to go so that each stage has the same cost function for stopping. Let

I (ks gr)
Vie(@r, qr) = (L

Then we have
Vn(zn,qn) = 2N,

Vi(2k, q&) = max [-Tk ak(Qk)} ,

where

qr 1 (w?) )

(grF1(wi) + (1 — q) Fa(w)) Viga (wi7 wF1(wi) + (1 — qr) Fa(w?)

() = (14+7)71

n
1=

1

which is independent of x. Each stopping set therefore has a threshold format, Ty, = {z | * > ax(qx)}, where
the threshold depends on gy.

Because Vy_1(z,q) > Vn(z,q) for all z,q, we have by the monotonicity property for stationary problems
that Vi(z,q) > Viy1(x,q) for all z, ¢, k, which implies a(q) > axt1(q) for all ¢, k.
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