
Exercise 2.7 

a) The proof of termination for this algorithm follows exactly that for the original algorithm. Each time a 

node j enters the OPEN list, its label is decreased and becomes equal to the length of some path from s 

to j. Although arc lengths are no longer necessarily nonnegative, cycles lengths are. Therefore, since each 

path can be decomposed into a path with no repeated nodes (there is a finite number of distinct such 

paths) plus a (possibly empty) set of cycles (which have a nonnegative length), the number of distinct 

lengths of paths from s to j that are smaller than any given number is finite. Therefore, there can be 

only a finite number of label reductions and the algorithm must terminate. 

Let (s, j1, j2, . . . , jk, t) be a shortest path from s to t and let d∗ be the corresponding shortest distance. 

We will show that the value of UPPER upon termination must be equal to d∗ . Indeed, each subpath 

(s, j1, . . . , jm), m = 1, . . . , k, of the shortest path must be a shortest path from s to jm. Let d∗ 
jm 

be the 

corresponding shortest distance from s to jm, m = 1, . . . , k. If the value of UPPER is larger than d∗ at 

termination, the same must be true throughout the algorithm, and therefore UPPER will also be larger 

than the length of all the paths (s, j1, . . . , jm) plus the underestimate ujm , m = 1, . . . , k, throughout the 

algorithm, i.e., 

∗dj < UPPER − ujm , m = 1, . . . , k. ∗ 
m 

( ) 

Using this relation for m = k, it follows that jk, the last node prior to t on the shortest path, will never 
∗enter the OPEN list with djk equal to the shortest distance dj , since when this happens UPPER would 
k 

be set to d∗ = d∗ 
j + ajk t in step 2 immediately following the next time node jk is examined by the 
k 

algorithm in step 2. Going backwards one step and using Eq. (*), node jk−1 will never enter the OPEN 

list with djk−1 equal to the shortest distance d∗ 
j . Proceeding backward similarly, we conclude that j1
k−1 

∗never enters the OPEN list with dj1 equal to the shortest distance dj [which is equal to the length of the 
1 

arc (s, j1)]. This happens, however, at the first iteration of the algorithm, obtaining a contradiction. It 

follows that at termination, UPPER will be equal to the shortest distance from s to t. Q.E.D. 

b) In the case where all arcs have nonnegative lengths, an underestimate of the shortest distance from any 

node to the destination node is clearly 0. Letting uj = 0 from all nodes j, we see that the algorithm 

described reduces to the algorithm of Section 2.3.1. 
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Exercise 1.2 

The algorithm takes the form: 

2Jk(xk) = min E {uk + (xk + uk − wk) + Jk+1(max(0, xk + uk − wk))}. 
0≤uk ≤2−xk wk 

uk =0,1,2 

For the initial state x0 = 1, we have 

2J0(1) = min E {u0 + (1 + u0 − w0) + J1(max(0, 1 + u0 − w0))}, 
u0=0,1 w0 

u0 = 0 : E{·} = 0.1(1 + J1(1)) + 0.7 · J1(0) + 0.2(1 + J1(0)) = 2.7 

u0 = 1 : E{·} = 1 + 0.1(4 + J1(2)) + 0.7(1 + J1(1)) + 0.2 · J1(0) = 3.818 

∗J0(1) = 2.7, µ (1) = 0 0

For the initial state x0 = 2, the only admissible control is u0 = 0, and we have 

J0(2) = E {(2 − w0)2 + J1(max(0, 2 − w0))}
w0 

= 0.1(4 + J1(2)) + 0.7(1 + J1(1)) + 0.2 · J1(0) 

= 2.818 

∗J0(2) = 2.818, µ (2) = 0.0
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Exercise 1.3 

Except for the first week, there are only two permissible states R (= running) and B (= broken down). 
For xk = R, there are only two permissible control values, namely m (= perform maintenance) and n (= no 

maintenance). For xk = B, there are two different permissible control values, namely r (= repair), and £ (= 

replace). For the first week, we’re in state N (new machine, and the machine is guaranteed to run through 

its first week of operation. Number the weeks from 0 to 3. Using the given probabilities we have: 

Week 3: For { 
for u3 = m, expected profit = 0.6 · 100 − 20 = 40 = Rx3 for u3 = n, expected profit = 0.3 · 100 = 30 

∗Thus, J3(R) = max{40, 30} = 40 and µ (R) = m. For 3

{ 
for u3 = r, expected profit = 0.6 · 100 − 40 = 20 

x3 = B for u3 = £, expected profit = 100 − 150 = −50 

∗Thus, J3(B) = max{20, −50} = 20 and µ (B) = r.3

Week 2: For 
{ 

for u2 = m, expected profit = 0.6[100 + J3(R)] + 0.4 · J3(B) − 20 = 72 
x2 = R for u2 = n, expected profit = 0.3[100 + J3(R)] + 0.7 · J3(B) = 56 

∗Thus, J2(R) = max{72, 56} = 72 and µ2(R) = m. For 

{ 
for u2 = r, expected profit = 0.6[100 + J3(R)] + 0.4J3(B) − 40 = 52 

x2 = B for u2 = £, expected profit = 100 + J3(R) − 150 = −10 

∗Thus, J2(B) = max{52, −10} = 52 and µ (B) = r.2

Week 1: For 
{ 

for u1 = m, expected profit = 0.6[100 + J2(R)] + 0.4 · J2(B) − 20 = 104 
x2 = R for u1 = n, expected profit = 0.3[100 + J2(R)] + 0.7J2(B) = 88 

∗Thus, J1(R) = max{104, 88} = 104 and µ (R) = m. For 1

{ 
for u2 = r, expected profit = 0.6[100 + J2(R)] + 0.4 · J2(B) − 40 = 84 

x1 = B for u1 = £, expected profit = 100 + J2(R) − 150 = 22 

Thus, J1(B) = max{84, 22} = 84 and µ1 
∗(B) = r. 

Week 0: We start with a new machine, which is guaranteed to run through its first week of operation. 
Thus J0(N) = 100 + J1(R) = 204. 

Conclusion: The profit-maximizing policy is to always maintain a running machine and always repair a 

broken one. The corresponding expected profit is $204. 
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Exercise 1.22 

We consider the problem of placing N points on a circle, so that the resulting polygon has maximal perimeter. As 
the circle is traversed in the clockwise direction, we number sequentially the encountered points as x1, x2, . . . , xN . 
Without loss of generality, we assume that x1 is at 12 o’ clock on the circle. For any point x on the circle, we 
denote by φ ∈ [0, 2π] the angle between x1 and x (measured clockwise), and we let x = x(φ) (in other words, 
we parameterize every point on the circle with the angle φ). We denote by Jk(φ) the maximal sum of chords 
with first vertex x(φ), last vertex x1 and N − k additional points on the subarc that lies (clockwise) between x 
and x1 (thus, we have N − k + 1 chords). Finally, without loss of generality, we assume that the radius of the 
circle is 1, so that the length of a chord that has as vertices two points on the circle is 2 sin(u/2), where u is the 
angle with respect to the center. 

By viewing as state the angle φk between x1 and xk (notice that, by definition, 0 ≤ φk ≤ 2π), and as control 
the angle uk between xk and xk+1, we obtain the following DP algorithm 

Jk(φk) = max [2 sin(uk/2) + Jk+1(φk + uk)] , k = 1, . . . , N − 1. (1) 
0≤uk≤2π−φk 

Jk(φk) = max Hk(uk, φk), (4) 
0≤uk≤2π−φk 

where 
uk 

( 
2π − φk − uk 

)
Hk(uk, φk) = 2 sin + 2(N − k) sin . (5)

2 2(N − k) 

It can be verified that for a fixed φk and in the range 0 ≤ uk ≤ 2π − φk, the function Hk(·, φk) is concave 
∗(its second derivative is negative) and its derivative is 0 at the point u = (2π − φk)/(N − k + 1) which must k ∗therefore be its unique maximum. Substituting this value of u in Eqs. (4) and (5), we obtain k 

2π−φk( 
2π − φk 

)  
2π − φk − N−k+1 

 ( 
2π − φk 

)
Jk(φk) = 2 sin + 2(N − k) sin = 2(N − k + 1) sin ,

2(N − k + 1) 2(N − k) 2(N − k + 1) 

and the induction is complete. 
Thus, given an optimally placed point xk with corresponding angle φk, the next point xk+1 is obtained by 

advancing clockwise by (2π − φk)/(N − k + 1). This process, when started at x1, yields as the optimal solution 
an equally spaced placement of the points on the circle. 
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Exercise 2.1 

The DP algorithm is:
 

JN −1(i) = ait
 

Jk(i) = min 
�
aij + Jk+1(j)

� 
k = 0, 1, . . . , N − 2 

j=1,...,N 

where for this problem t = 6 and N = 5. 

4th Stage: 

J4(1) = a16 = 8 path = {1 → 6} 

J4(2) = a26 = ∞ path = {2 → 6} 

J4(3) = a36 = 9 path = {3 → 6} 

J4(4) = a46 = 2 path = {4 → 6} 

J4(5) = a56 = 5 path = {5 → 6} 

3th Stage: 

J3(1) = min{a11 + J4(1), a12 + J4(2), a13 + J4(3), a14 + J4(4), a15 + J4(5)} 

= min{0 + 8, ∞, 1 + 9, 5 + 2, ∞} = 7 path = {1 → 4 → 6} 

J3(2) = min{a21 + J4(1), a22 + J4(2), a23 + J4(3), a24 + J4(4), a25 + J4(5)} 

= min{∞, ∞, ∞, 1 + 2, ∞} = 3 path = {2 → 4 → 6} 

J3(3) = min{a31 + J4(1), a32 + J4(2), a33 + J4(3), a34 + J4(4), a35 + J4(5)} 

= min{∞, ∞, 0 + 9, ∞, 5 + 5} = 9 path = {3 → 6} 

J3(4) = min{a41 + J4(1), a42 + J4(2), a43 + J4(3), a44 + J4(4), a45 + J4(5)} 

= min{∞, ∞, ∞, 0 + 2, ∞} = 2 path = {4 → 6} 

J3(5) = min{a51 + J4(1), a52 + J4(2), a53 + J4(3), a54 + J4(4), a55 + J4(5)} 

= min{∞, ∞, 0 + 9, ∞, 0 + 5} = 5 path = {5 → 6} 

2nd Stage: 

J2(1) = min{a11 + J3(1), a12 + J3(2), a13 + J3(3), a14 + J3(4), a15 + J3(5)} 

= min{0 + 7, 4 + 3, 1 + 9, 5 + 2, ∞} = 7 path = {1 → 4 → 6 or 1 → 2 → 4 → 6} 

J2(2) = min{a21 + J3(1), a22 + J3(2), a23 + J3(3), a24 + J3(4), a25 + J3(5)}
= min{∞, 0 + 3, ∞, 1 + 2, ∞} = 3 path = {2 → 4 → 6} 

J2(3) = min{a31 + J3(1), a32 + J3(2), a33 + J3(3), a34 + J3(4), a35 + J3(5)} 

= min{∞, ∞, 0 + 9, ∞, 5 + 5} = 9 path = {3 → 6} 

J2(4) = min{a41 + J3(1), a42 + J3(2), a43 + J3(3), a44 + J3(4), a45 + J3(5)} 

= min{∞, ∞, ∞, 0 + 2, ∞} = 2 path = {4 → 6} 

J2(5) = min{a51 + J3(1), a52 + J3(2), a53 + J3(3), a54 + J3(4), a55 + J3(5)} 

= min{∞, ∞, 0 + 9, ∞, 0 + 5} = 5 path = {5 → 6} 

Since the shortest distances of paths with 2 arcs are the same as those of paths with 3 arcs, additional 
arcs will not create shorter paths. The shortest paths are therefore those found in the second stage. 
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Exercise 2.7 

a) The proof of termination for this algorithm follows exactly that for the original algorithm. Each time a 

node j enters the OPEN list, its label is decreased and becomes equal to the length of some path from s 

to j. Although arc lengths are no longer necessarily nonnegative, cycles lengths are. Therefore, since each 

path can be decomposed into a path with no repeated nodes (there is a finite number of distinct such 

paths) plus a (possibly empty) set of cycles (which have a nonnegative length), the number of distinct 
lengths of paths from s to j that are smaller than any given number is finite. Therefore, there can be 

only a finite number of label reductions and the algorithm must terminate. 

b) In the case where all arcs have nonnegative lengths, an underestimate of the shortest distance from any 

node to the destination node is clearly 0. Letting uj = 0 from all nodes j, we see that the algorithm 

described reduces to the algorithm of Section 2.3.1. 
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Exercise 2.9 

We will transform the problem to a (standard) shortest path problem in an expanded graph that is con­
structed from the given graph. Let I be the set of nodes of the original graph. The expanded graph has nodes 
(i, 0), (i, 1), . . . , (i, N), where i ranges over the node set I of the original graph. The meaning of being in node 
(i, m), m = 1, . . . , N , is that we are at node i and have already successively visited the sets T1, . . . , Tm, but not 
the sets Tm+1, . . . , TN . The meaning of being in node (i, 0) is that we are at node i and have not yet visited 
any node in the set T1. 

The arcs of the expanded graph are constructed as follows: For each arc (i, j) of the original graph, with 
length aij , introduce for m = 0, . . . , N − 1, in the expanded graph an arc of length aij that goes from (i, m) to 
(j, m) if j ∈/ Tm+1, and goes from (i, m) to (j, m + 1) if j ∈ Tm+1. Also, for each arc (i, j) of length aij of the 
original graph, introduce in the expanded graph an arc of length aij that goes from (i, N) to (j, N). 

It is seen that the problem is equivalent to finding a shortest path from (s, 0) to (t, N) in the expanded graph. 
Let Dk+1(i, m), m = 0, 1, . . . , N , be the shortest distance from (i, m) to the destination (t, N) using k arcs 

or less. The DP iteration is 

kDk+1(i, m) = min min aij + Dk(j, m) , min aij + D (j, m + 1) , 
{j | (i,j) is an arc} j∈/Tm+1 j∈Tm+1 

m = 0, . . . , N − 1, 

k
{ 

min aij + D (j, N) if i = t,Dk+1(i, N) = {j | (i,j) is an arc}
0 if i = t. 

The initial condition is { ∞ if (i, m) = ( t, N),
D0(i, m) = 0 if (i, m) = (t, N). 

This algorithm is not very efficient because it requires as many as N · |I| iterations, where |I| is the number of 
nodes in the original graph. The algorithm can be made more efficient by observing that to calculate D(i, k) for 
all i, we do not need to know D(i, k − 1), . . . , D(i, 0); it is sufficient to know just D(j, k + 1) for j ∈ Tk+1. Thus, 
we may calculate first D(i, N) using a standard shortest path computation, then calculate D(i, N − 1), then 
D(i, N − 2), etc. This more efficient calculation process may also be viewed as a DP algorithm that involves the 
solution of N (standard) shortest path problems involving several origins and a single destination. The origins 
are the nodes in Tk and the destination is an artificial node to which the nodes j ∈ Tk+1 are connected with an 
arc of length D(j, k + 1). 
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Common Problems in Homework 1 

1.3: 

(1) Some students make an assumption that the machine makes a profit of $100 in the beginning of the 
period, but this is not reasonable. 

(2) Some students compute the optimal cost to go from backward for five weeks (including the first 
running week). The problem statement actually means in total four weeks, not the beginning week plus 
four weeks. 

1.22 

(1) Some students only perform the mathematical induction at the N-2 stages, where the sub-problem 
has two variables to optimize. This is not complete. A complete solution should include a general case 
from N-k stage to N-k-1 stage. 

2.1 

(1) From 1 to 6, it should have two different shortest paths, one is 1->4->6 and the other is 1->2->4->6. 

(2) Please write out the shortest path (optimal policy) explicitly. 

2.7 

(1) Even though this problem carry out a similar proof workflow as the label correcting algorithm in the 
textbook, in the write up, it should be still written down in details. Some students only include the part 
of proving termination and existence. These pieces are just the preliminary proof. 

2.9 

(1) Lots of students misinterpret the problem statement and consider that after the path pass through 
T_k, it can never go back to T_1, … T_{k-1}. This is not true. 

(2) Notice that part b requires a sequence of ordinary shortest path problems involving a single origin 
and multiple destination, not any type of shortest path problems. 
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