
MIT OpenCourseWare 
http://ocw.mit.edu
 
6.189 Multicore Programming Primer, January (IAP) 2007 
 
 
 
Please use the following citation format: 
 

Saman Amarasinghe and Rodric Rabbah, 6.189 Multicore Programming 
Primer, January (IAP) 2007. (Massachusetts Institute of Technology: 
MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). 
License: Creative Commons Attribution-Noncommercial-Share Alike. 

 
Note: Please use the actual date you accessed this material in your citation. 
 
 
For more information about citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms
 

http://ocw.mit.edu/
http://ocw.mit.edu/
http://ocw.mit.edu/terms


 

6.189 Multicore Programming Primer Mini-Quiz #4 (1/19/2007) 
 
 
In 1968, ACM published Edsger Dijkstra’s letter titled Go To Statement Considered 
Harmful. Dijkstra argued that GOTO statements should be abolished because they lead to 
unstructured control flow and complicate the analysis and verification of programs. In 
1974, Don Knuth presented an alternative viewpoint in Structured Programming with go 
to Statements. He showed that for some common programming tasks, GOTOs are the 
best language construct to use. This was more than 30 years ago. Today (and looking into 
the future) the programming landscape is changing because of the new software crisis. 
How would structured vs. unstructured programming help programmers more rapidly 
express their parallel computation? What are some of the tradeoffs they might 
experience? 
 
 
New applications have to exploit the multicore parallelism if they are to run faster on 
emerging processors. This means that applications have to explicitly describe their 
parallelism, or compilers have to extract parallelism with practical efficiency. Either of 
these requirements is more easily satisfied with a structured programming approach. 
 
In streaming applications for example, structured dataflow graphs readily expose 
communication and computation patterns, thereby allowing compilers to more readily 
adjust the granularity of the computation for a load balanced execution. An unstructured 
dataflow graph may obscure communication patterns, making it harder to determine 
synchronization barrier, leading to unbalanced execution. 
 
The structured programming approach however may force programmers to coerce 
dataflow patterns to fit the structure allowed by the programming model, and the resultant 
code may not be as naturally appealing had the language allowed for more unstructured 
communication patterns. In StreamIt for example, splitters and joiners are required to 
appear within single-input-single-output splitjoins, whereas they might be useful as first 
class stream elements (i.e., used outside of splitjoins). 
 


