
MIT OpenCourseWare
http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Saman Amarasinghe and Rodric Rabbah, 6.189 Multicore Programming
Primer, January (IAP) 2007. (Massachusetts Institute of Technology:
MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY).
License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms

http://ocw.mit.edu/
http://ocw.mit.edu/
http://ocw.mit.edu/terms

6.189 Multicore Programming Primer

Mini-Quiz #2 (01/12/2007) Solutions

1. This implementation is vulnerable to deadlock. For example, suppose we process

two votes concurrently: "Candidate 1 is better than candidate 2" and "Candidate 2 is
better than candidate 1". Here is one interleaving which leads to deadlock:

movePoints(c1, c2)
 synchronized(c1) {

 movePoints(c2, c1)

 synchronized(c2) {

 synchronized(c2) {

 synchronized(c1) {

2. This (correct) implementation solves the deadlock problem of (1) by acquiring the

locks in a canonical order. Also, it only locks on the two candidates associated with
the current vote.

3. This implementation is also correct in that it does not deadlock. However, since it

locks on the (one and only) Election object, only one thread can be in the critical
section at any time. So this implementation will be slower than (2) since it can't take
advantage of the concurrency allowed by the problem.

4. This implementation has a race condition because the first lock is released before the

second is acquired. To see that this is a problem, suppose that both candidates 1 and
2 initially have 991 points, and we need to process two votes: "Candidate 1 is better
than candidate 2" and "Candidate 2 is better than candidate 1". Under either of the
two possible ways in which the votes can be processed atomically, one candidate
ends up with 990 points while the other ends up with 992 points. Below is one
interleaving which gives both candidates 991 points. So this implementation is
incorrect because the votes are not processed atomically.

movePoints(c1, c2)
synchronized(c2) {
 tmp = c2.getPoints/100;
 c2.AddPoints(-tmp);
}

movePoints(c2, c1)

synchronized(c1) {
 tmp = c1.getPoints/100;
 c1.AddPoints(-tmp);
}

/* Now c1 and c2 both have 982 points */

synchronized(c1) {
 c1.AddPoints(tmp);
}

synchronized(c2) {
 c2.AddPoints(tmp);
}

/* Now c1 and c2 both have 991 points */

5. This implementation also has a race condition; we can see that there is an
unprotected region between when the candidate's point value is read and when it is
used. Suppose candidates 1 and 2 initially have 1000 points, and we need to process
two votes for "Candidate 1 is better than candidate 2". If the vote processing were
atomic, then candidate 1 would end up with 1019 points and candidate 2 would end
up with 981 points. Below is one interleaving which gives a different result. So this
implementation is incorrect because the votes are not processed atomically.

movePoints(c1, c2)
synchronized(c2) {
 tmp = c2.getPoints/100;

 }

movePoints(c1, c2)

synchronized(c2) {
 tmp = c2.getPoints/100;
}

/* tmp == 10 in both threads */

synchronized(c2) {
 c2.AddPoints(-tmp);
}

synchronized(c2) {
 c2.AddPoints(-tmp);
}

/* Now c1 has 1000 points, c2 has 980 points */

synchronized(c1) {
 c1.AddPoints(tmp);
}

synchronized(c1) {
 c1.AddPoints(tmp);
}

/* Now c1 has 1020 points, c2 has 980 points */

