
MIT OpenCourseWare
http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Rodric Rabbah, 6.189 Multicore Programming Primer, January (IAP)
2007. (Massachusetts Institute of Technology: MIT OpenCourseWare).
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative
Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 10

Performance Monitoring and
Optimizations

1 Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 6.189 IAP 2007 MIT

Review: Keys to Parallel Performance

●	 Coverage or extent of parallelism in algorithm
� Amdahl’s Law

●	 Granularity of partitioning among processors
� Communication cost and load balancing

●	 Locality of computation and communication
� Communication between processors or between

processors and their memories

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 2	

Communication Cost Model

total data sent number of messages

C = f ∗ (o + l +
n / m

+ t)overlap−
B

frequency cost induced by amount of latency
of messages contention per hidden by concurrency

message with computation
overhead per

message

(at both ends)
 bandwidth along path

(determined by network)
network delay

per message

3 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Overlapping Communication with Computation

Get Data Memory is idle

CPU is idle Compute

synchronization

point

Get Data

Compute

4 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Limits in Pipelining Communication

● Computation to communication ratio limits
performance gains from pipelining

Get Data

Compute

Get Data

Compute

● Where else to look for performance?

5 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Artifactual Communication

● Determined by program implementation and
interactions with the architecture

● Examples:
� Poor distribution of data across distributed memories
� Unnecessarily fetching data that is not used
� Redundant data fetches

6 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Lessons From Uniprocessors

● In uniprocessors, CPU communicates with memory

● Loads and stores are to uniprocessors as
_______ and ______ are to distributed memory
multiprocessors

“get” “put”

● How is communication overlap enhanced in
uniprocessors?
� Spatial locality
� Temporal locality

7 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Spatial Locality

●	 CPU asks for data at address 1000

●	 Memory sends data at address 1000 … 1064

� Amount of data sent depends on architecture

parameters such as the cache block size

● Works well if CPU actually ends up using data from

1001, 1002, …, 1064

●	 Otherwise wasted bandwidth and cache capacity

8	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Temporal Locality

●	 Main memory access is expensive
●	 Memory hierarchy adds small but fast memories

(caches) near the CPU
� Memories get bigger as distance

from CPU increases

main
memory

cache
(level 2)

cache
(level 1)

●	 CPU asks for data at address 1000
●	 Memory hierarchy anticipates more accesses to same

address and stores a local copy

●	 Works well if CPU actually ends up using data from 1000 over
and over and over …

●	 Otherwise wasted cache capacity

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 9	

Reducing Artifactual Costs in
Distributed Memory Architectures

● Data is transferred in chunks to amortize
communication cost
� Cell: DMA gets up to 16K
� Usually get a contiguous chunk of memory

●	 Spatial locality
� Computation should exhibit good spatial locality

characteristics

●	 Temporal locality
� Reorder computation to maximize use of data fetched

10	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

6.189 IAP 2007

Single Thread Performance: the last
frontier in the search for

performance?

11 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Single Thread Performance

● Tasks mapped to execution units (threads)
● Threads run on individual processors (cores)

sequential sequential

parallel parallel

finish line: sequential time + longest parallel time

● Two keys to faster execution
� Load balance the work among the processors
� Make execution on each processor faster

12 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Understanding Performance

● Need some way of
measuring performance
� Coarse grained

measurements

% gcc sample.c
% time a.out
2.312u 0.062s 0:02.50 94.8%
% gcc sample.c –O3
% time a.out
1.921u 0.093s 0:02.03 99.0%

� … but did we learn much
about what’s going on?

#define N (1 << 23)
#define T (10)
#include <string.h>
double a[N],b[N];

void cleara(double a[N]) {
int i;
for (i = 0; i < N; i++) {

a[i] = 0;
}

}
int main() {

double s=0,s2=0; int i,j;

for (j = 0; j < T; j++) {

for (i = 0; i < N; i++) {

b[i] = 0;

}

cleara(a);

memset(a,0,sizeof(a));

record start time

for (i = 0; i < N; i++) {
s += a[i] * b[i];
s2 += a[i] * a[i] + b[i] * b[i];

}

}	
record stop time

printf("s %f s2 %f\n",s,s2);
}

13	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Measurements Using Counters

● Increasingly possible to get accurate measurements
using performance counters
� Special registers in the hardware to measure events

● Insert code to start, read, and stop counter
� Measure exactly what you want, anywhere you want
� Can measure communication and computation duration
� But requires manual changes
� Monitoring nested scopes is an issue
� Heisenberg effect: counters can perturb execution time

clear/start stop

time

14 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Dynamic Profiling

● Event-based profiling
� Interrupt execution when an event counter reaches a

threshold

● Time-based profiling
� Interrupt execution every t seconds

● Works without modifying your code
� Does not require that you know where problem might be
� Supports multiple languages and programming models
� Quite efficient for appropriate sampling frequencies

15 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Counter Examples

● Cycles (clock ticks)
● Pipeline stalls
● Cache hits
● Cache misses
● Number of instructions
● Number of loads
● Number of stores
● Number of floating point operations

● …

16 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Useful Derived Measurements

● Processor utilization
� Cycles / Wall Clock Time

● Instructions per cycle
� Instructions / Cycles

● Instructions per memory operation
� Instructions / Loads + Stores

● Average number of instructions per load miss
� Instructions / L1 Load Misses

● Memory traffic
� Loads + Stores * Lk Cache Line Size

● Bandwidth consumed
� Loads + Stores * Lk Cache Line Size / Wall Clock Time

● Many others
� Cache miss rate
� Branch misprediction rate
� …

17 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

application
source

run
(profiles

execution)

performance
profile

binary
object code

interpret profile

binary analysis
source

correlation

Common Profiling Workflow

application
source

run
(profiles

execution)

performance
profile

binary
object code

compiler

interpret profile

binary analysis
source

correlation

18 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Popular Runtime Profiling Tools

● GNU gprof
� Widely available with UNIX/Linux distributions

gcc –O2 –pg foo.c –o foo

./foo

gprof foo

● HPC Toolkit
� http://www.hipersoft.rice.edu/hpctoolkit/

● PAPI
� http://icl.cs.utk.edu/papi/

● VTune
� http://www.intel.com/cd/software/products/asmo-na/eng/vtune/

● Many others

19 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

http://www.hipersoft.rice.edu/hpctoolkit/
http://icl.cs.utk.edu/papi/
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/

GNU gprof

MPEG-2 decoder (reference implementation)
%./mpeg2decode -b mei16v2.m2v -f -r

-r uses double precision inverse DCT
% cumulative self self total
time seconds seconds calls ns/call ns/call name
90.48 0.19 0 .19 7920 23989.90 23989.90 Reference IDCT

4.76 0.20 0 . 0 1 2148 4655.49 4655.49 Decode-GG~-Intra-Block

%./mpeg2decode -b mei16v2.m2v -f

uses fast integer based inverse DCT instead
66.67 0.02 0.02 8238 2427.77 2427.77 form component -prediction
33.33 0.03 0 . 0 1 63360 157.83 157.83 idctcol

Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

HPC Toolkit

% hpcrun -e PAPI_TOT_CYC:499997 -e PAPI_L1_LDM \

-e PAPI_FP_INS -e PAPI_TOT_INS mpeg2decode -- …

Profile the “total cycles” using period 499997

Profile the “floating point instructions” using default period

Profile the “L1 data cache load misses” using the default period

Profile the “total instructions” using the default period

Running this command on a machine “sloth” produced a data file
mpeg2dec.PAPI_TOT_CYC-etc.sloth.1234

21 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Interpreting a Profile

% hpcprof -e mpeg2dec mped2dec.PAPI_TOT_CYC-etc.sloth.1234
Columns correspond to the following events [event:period (events/sample)]

PAPI_TOT_CYC:499997 - Total cycles (698 samples)

PAPI_L1_LDM:32767 - Level 1 load misses (27 samples)

PAPI_FP_INS:32767 - Floating point instructions (789 samples)

PAPI_TOT_INS:32767 - Instructions completed (4018 samples)

Load Module Summary:

91.7% 74.1% 100.0% 84.1% /home/guru/mpeg2decode

8.3% 25.9% 0.0% 15.9% /lib/libc-2.2.4.so

Function Summary:

...

Line summary:

...

22 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

1 # d e f i n e N (1 << 23)

2 # d e f i n e T (10)

3 # i n c l u d e < s t r i n g . h >

4 d o u b l e a [N] ,b [N] ;

5 void cleara (doub le a [N]) {

6 i n t i;
7 f o r (i = 0; i < N ; i++){
8 a [i] = 0 ;
9 1

1 0 1

11 i n t m a i n () {

1 2 d o u b l e s=0 , s2=0 ; i n t i ,j ;

13 f o r (j = 0 ; j < T ; j++) {

1 4 f o r (i = 0 ; i < N ; i++){
1 5 b [i] = 0 ;
1 6 1
1 7 cleara (a);
1 8 memse t (a ,O , s i zeo f (a));
1 9 f o r (i = 0; i < N ; i++){
20 s += a [i] * b [i] ;

21 s 2 += a [i] *a [i] + b [i] * b [i] ;

22 1

23 1

24 p r i n t f ("s %ds 2 %d\nVV, s ,s 2) ;
25

hpcprof Annotated Source File

1

23 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

hpcviewer Screenshot

24 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Performance in Uniprocessors
time = compute + wait

●	 Instruction level parallelism
� Multiple functional units, deeply pipelined, speculation, ...

●	 Data level parallelism
� SIMD: short vector instructions (multimedia extensions)

–	 Hardware is simpler, no heavily ported register files
–	 Instructions are more compact
–	 Reduces instruction fetch bandwidth

●	 Complex memory hierarchies
� Multiple level caches, may outstanding misses,

prefetching, …

5	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 2

SIMD

● Single Instruction, Multiple Data
● SIMD registers hold short vectors
● Instruction operates on all elements in SIMD register at once

Scalar code Vector code
for (int i = 0; i < n; i+=1) { for (int i = 0; i < n; i += 4) {

c[i] = a[i] + b[i] c[i:i+3] = a[i:i+3] + b[i:i+3]
} }

a a

b b

c

scalar register SIMD register

c

 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 26

SIMD Example

for (int i = 0; i < n; i+=1) {
c[i] = a[i] + b[i]

}

LOAD LOAD

ADD

STORE

b[i]a[i]

c[i]
Cycle Slot 1 Slot 2

1 LOAD LOAD

2 ADD

3 STORE

… … …

Estimated cycles for loop:
● Scalar loop

n iterations ∗ 3 cycles/iteration

27 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SIMD Example

for (int i = 0; i < n; i+=4) {
c[i:i+3] = a[i:i+3] + b[i:i+3]

}

VLOAD VLOAD

VADD

VSTORE

b[i:i+3]a[i:i+3]

c[i:i+3]
Cycle Slot 1 Slot 2

1 VLOAD VLOAD

2 VADD

3 VSTORE

… … …

Estimated cycles for loop:
● Scalar loop

n iterations ∗ 3 cycles/iteration
● SIMD loop

n/4 iterations ∗ 3 cycles/iteration
● Speedup: ?

28 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SIMD Example

for (int i = 0; i < n; i+=4) {
c[i:i+3] = a[i:i+3] + b[i:i+3]

}

VLOAD VLOAD

VADD

VSTORE

b[i:i+3]a[i:i+3]

c[i:i+3]
Cycle Slot 1 Slot 2

1 VLOAD VLOAD

2 VADD

3 VSTORE

… … …

Estimated cycles for loop:
● Scalar loop

n iterations ∗ 3 cycles/iteration
● SIMD loop

n/4 iterations ∗ 3 cycles/iteration
● Speedup: 4x

29 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SIMD in Major ISAs

Instruction Set Architecture SIMD Width Floating Point
AltiVec
MMX/SSE
3DNow!
VIS
MAX2
MVI
MDMX

PowerPC 128 yes
Intel 64/128 yes
AMD 64 yes
Sun 64 no
HP 64 no

Alpha 64 no
MIPS V 64 yes

●	 And of course Cell
� SPU has 128 128-bit registers
� All instructions are SIMD instructions
� Registers are treated as short vectors of 8/16/32-bit

integers or single/double-precision floats

30	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Using SIMD Instructions

● Library calls and inline assembly
� Difficult to program
� Not portable

● Different extensions to the same ISA
� MMX and SSE
� SSE vs. 3DNow!

● You’ll get first hand-experience experience with Cell

31 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Superword Level Parallelism (SLP)

● Small amount of parallelism
� Typically 2 to 8-way

exists within basic blocks

● Uncovered with simple analysis

Samuel Larsen. Exploiting Superword Level Parallelism with Multimedia Instruction
Sets. Master's thesis, Massachusetts Institute of Technology, May 2000.

6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 32

1. Independent ALU Ops

R = R + XR * 1.08327

G = G + XG * 1.89234

B = B + XB * 1.29835

R R XR 1.08327
G = G + XG * 1.89234
B B XB 1.29835

33 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

2. Adjacent Memory References

R = R + X[i+0]

G = G + X[i+1]

B = B + X[i+2]

R R
G = G + X[i:i+2]
B B

34 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

3. Vectorizable Loops

for (i=0; i<100; i+=1)
A[i+0] = A[i+0] + B[i+0]

35 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

3. Vectorizable Loops

for (i=0; i<100; i+=4)
A[i+0] = A[i+0] + B[i+0]
A[i+1] = A[i+1] + B[i+1]
A[i+2] = A[i+2] + B[i+2]
A[i+3] = A[i+3] + B[i+3]

for (i=0; i<100; i+=4)

A[i:i+3] = B[i:i+3] + C[i:i+3]

36 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

4. Partially Vectorizable Loops

for (i=0; i<16; i+=1)
L = A[i+0] – B[i+0]
D = D + abs(L)

37 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

4. Partially Vectorizable Loops

for (i=0; i<16; i+=2)
L = A[i+0] – B[i+0]
D = D + abs(L)
L = A[i+1] – B[i+1]
D = D + abs(L)

for (i=0; i<16; i+=2)

L0
L1

= A[i:i+1] – B[i:i+1]

D = D + abs(L0)

D = D + abs(L1)

38 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

From SLP to SIMD Execution

● Benefits
� Multiple ALU ops → One SIMD op
� Multiple load and store ops → One wide memory op

● Cost
� Packing and unpacking vector register
� Reshuffling within a register

39 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Packing and Unpacking Costs

● Packing source operands
● Unpacking destination operands

A = f()
B = g()
C = A + 2
D = B + 3
E = C / 5
F = D * 7

A
B

A

B

C
D
= A
B
+

C

D

C
D

2
3

40 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Packing Costs can be Amortized

● Use packed result operands
● Share packed source operands

A = B + C
D = E + F

G = B + H
I = E + J

A = B + C
D = E + F

G = A - H
I = D - J

41 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Adjacent Memory is Key

● Large potential performance gains
� Eliminate load/store instructions
� Reduce memory bandwidth

● Few packing possibilities
� Only one ordering exploits pre-packing

42 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SLP Extraction Algorithm

● Identify adjacent memory references

A = X[i+0]

C = E * 3

B = X[i+1]

H = C – A

D = F * 5

J = D - B

43 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SLP Extraction Algorithm

● Identify adjacent memory references

A = X[i+0]
C = E * 3

A
B = X[i:i+1]

B = X[i+1]
H = C – A

D = F * 5

J = D - B

44 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SLP Extraction Algorithm

● Follow operand use

A = X[i+0]

C = E * 3

B = X[i+1]

H = C – A

D = F * 5

J = D - B

A
B = X[i:i+1]

45 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SLP Extraction Algorithm

● Follow operand use

A = X[i+0]

A

B = X[i+1]

C = E * 3

B = X[i:i+1]

H = C – A
D = F * 5
J = D - B H C

J = D -
A
B

46 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SLP Extraction Algorithm

● Follow operand use

A = X[i+0]

C = E * 3

B = X[i+1]

H = C – A

D = F * 5

J = D - B

A
B = X[i:i+1]

DJ
C

= -
H A

B

47 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

SLP Extraction Algorithm

● Follow operand use

A = X[i+0]
C = E * 3

C
D -

D = F * 5

B = X[i+1]

H
J

H = C – A

J = D - B

A
B = X[i:i+1]

C
D =

E
F *

=

3
5

A
B

8 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 4

SLP Extraction Algorithm

● Follow operand use

A = X[i+0]

C = E * 3

A
B = X[i:i+1]

B = X[i+1] C
D

H
J

=
E
F

C
D

*H = C – A

D = F * 5

J = D - B

= -

3
5

A
B

49 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

sw
im

tomcatv

mgrid

su
2c

or
wave

5
apsi

hy
dro2d

tur

b3d
applu
fpppp

FIR

IIR
VMM
MMM

YUV

SLP Availability

0
10
20
30
40
50
60
70
80
90

100
% dynamic SUIF instructions eliminated

128 bits
1024 bits

50 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

2

sw
im

tomcatv FIR

IIR

VMM

MMM

YUV

Speedup on AltiVec

1
1. 1
1. 2
1. 3
1. 4
1. 5
1. 6
1. 7
1. 8
1. 9

6.7

51 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Performance in Uniprocessors
time = compute + wait

●	 Instruction level parallelism
� Multiple functional units, deeply pipelined, speculation, ...

●	 Data level parallelism
� SIMD: short vector instructions (multimedia extensions)

–	 Hardware is simpler, no heavily ported register files
–	 Instructions are more compact
–	 Reduces instruction fetch bandwidth

●	 Complex memory hierarchies
� Multiple level caches, may outstanding misses,

prefetching, …

� Exploiting locality is essential

52	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Instruction Locality

cache miss cache hit

A

B

C

cache

size

Working

Set Size

for i = 1 to N
A();
B();
C();

end

Baseline

miss rate = 1A
B
C

+
+

53 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Instruction Locality

cache miss cache hit

A

B

C

for i = 1 to N
A();
B();
C();

end

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

Working
Set Size

cache
size

A B C

A
B
C

+
+

Full ScalingBaseline

miss rate = 1 / Nmiss rate = 1

54 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Example Memory (Cache) Optimization

A

B

C

cache

size

Working

Set Size

for i = 1 to N
A();
B();
C();

end

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

inst
A B C

datainst data

A
B
C

+
+ C

B
C
B

B
A

B
A

Full Scaling Baseline

55 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Example Memory (Cache) Optimization

A

B

C

cache

size

Working

Set Size

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

for i = 1 to N
A();
B();

end
for i = 1 to N

C();

inst
A B C

datainst data

A
B
C

+
+

inst data
C

A
B+C

B
C
B

B
A

B
A

B
A

Full Scaling Baseline

C
B

for i = 1 to N
A();
B();
C();

end

56 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

for j = 1 to N/64

Example Memory (Cache) Optimization

A

B

C

cache

size

Working

Set Size

end

for i = 1 to 64
A();
B();

end
for i = 1 to 64

C();

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

inst
A B C

datainst data

A
B
C

+
+

inst data
C

A
B+C

B
C
B

B
A

B
A

B
A

Full Scaling Baseline Cache Aware

C
B

for i = 1 to N
A();
B();
C();

end

57 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Results from Cache Optimizations

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

ignoring cache constraints cache aware

Janis Sermulins. Cache Aware Optimizations of Stream Programs.
Master's thesis, Massachusetts Institute of Technology, May 2005.

StrongARM 1110 Pentium 3 Itanium 2

8 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007 5

6.189 IAP 2007

Summary

59 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Programming for Performance

● Tune the parallelism first

● Then tune performance on individual processors
� Modern processors are complex
� Need instruction level parallelism for performance
� Understanding performance requires a lot of probing

● Optimize for the memory hierarchy
� Memory is much slower than processors
� Multi-layer memory hierarchies try to hide the speed gap
� Data locality is essential for performance

60 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Programming for Performance

● May have to change everything!
� Algorithms, data structures, program structure

● Focus on the biggest performance impediments

� Too many issues to study everything
� Remember the law of diminishing returns

61 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

