
6.189 IAP 2011 –Common Python Mistakes
We’ve been seeing a bunch of mistakes or misconceptions so this handout should clear some things out for you and
serve as a reference.

•	 Variables. Remember that a varible is a placeholder for a value that you (or someone calling your function)
can assign, and it can be any type - string, list, int, float, dictionary, tuple. Variables are exactly like variables
you learned about in calculus, although they can be more than numbers. So, rock is a variable, called rock,
that we can assign any value - ie rock = 8 or rock = ’paper’. However, ’rock’ is a string - we cannot
assign it a value, it is already the string value ’rock’. If this distinction is still confusing to you, please visit
office hours for clarification.

•	 The in keyword: Checks if some single item is in a larger collection. Returns True if the item is in the list,
and False otherwise. Can be negated with the keyword not.

>>> some_list = [1, 3, 6, 7]

>>> 3 in some_list

True

>>> 5 in some_list

False

>>> 5 not in some_list

True

>>> [3] in some_list

False

Take special note of this last example. While the single item 3 is in some list, the list [3] is not.

•	 Boolean types. Remember that True and False are Boolean types, but ‘‘True’’, ’True’, ‘‘False’’ and
’False’ are all strings. Boolean types are really important because they enable us to do special things within
if statements and while loops - so be sure to return a Boolean, not a string, when writing functions that ask
you to return a Boolean.

•	 Print versus return. When you’re calling a function, you can print things wherever you want; the print
statement functions as a handy debugging tool, even. However, you can only return one thing. This means
that as soon as your code hits a return statement, the function will exit. Keep this in mind - you never want
to return too early. Also, INDENTATION IS REALLY, REALLY IMPORTANT!

For example, can you find the error in the following code that should return True if a number is prime, and
return False if it is not?

def is_prime(number):

for divisor in range(2, number):

if (number % divisor) != 0:

return True

return False

In this case, there is a big error. It seems to work at first:

>>> is_prime(7)

True

>>> is_prime(10)

False

1

But look at the test case

>>> is_prime(9)

True

Hmmmm..... what’s wrong? Ultimately, the problem is that I return True in the wrong place. So, I try again.

def is_prime(number):

for divisor in range(2, number):

if (number % divisor) == 0:

return False

return True

There is another big problem here - I return True too early (when? for what tests cases? why is that?).
Finally, one last try:

def is_prime(number):

for divisor in range(2, number):

if (number % divisor) == 0:

return False

return True

Ah, this time I’ve got it. See how I have returned True and False, but only when I know the number is or is
not prime. I don’t want to return too early, because then I might get false positives or negatives.

•	 is versus ==. == asks if two values are equal - ie, if they are interpreted the same way. However, is asks if
two values are the exact same object, which often gives unexpected results. If you’re unsure, use == (the same
applies to not is versus !=). Example:

>>> a = [1,2]

>>> b = [1,2]

>>> c = a

>>> a is b

False

>>> a is c

True

>>> a == b

True

•	 Integer division. Remember that one of your arguments to division should be a float if you want to make a
fractional quantity - do this by including a decimal or casting one of your arguments to a float.

>>> x = 7

>>> print 1/x

0

>>> print 1./x

0.14285714285714285

>>> print 1/float(x)

0.14285714285714285

•	 Debugging. We’ve seen a lot of code that has too many return statements and students are very, very confused
at the results they’re seeing. We suggest using Rubber Duck Debugging
(http://en.wikipedia.org/wiki/Rubber duck debugging - a silly concept that works. Explain your code

2

http://en.wikipedia.org/wiki/Rubber_duck_debugging

to a rubber duck, or a teddy bear, or your coffee cup - the idea is, that by explaining what your written code
actually does (as opposed to what you want it to do) will help your spot your errors. Be sure to comment
your code as you go; if, when you’re explaining your code, you reach a section that is particularly confusing,
you’ve found a really great place for a comment!!

•	 Defining functions and reusing them. It is okay - in fact, it is completely necessary sometimes - to define
multiple functions, and call them inside another function. Example:

VOWELS = [’a’, ’e’, ’i’, ’o’, ’u’]

def is_a_vowel(c):

check if c is a vowel

lowercase_c = c.lower()

if lowercase_c in VOWELS:

Return (BOOLEAN!) True if c is a vowel

return True

else:

c must not be a vowel; return (BOOLEAN!) False

return False

def only_vowels(phrase):

Takes a phrase, and returns a string of all the vowels

Initalize an empty string to hold all of the vowels

vowel_string = ’’

for letter in phrase:

#	 check if each letter is a vowel
if is_a_vowel(letter):

If it’s a vowel, we append the letter to the vowel string
vowel_string = vowel_string + letter

#	 if not a vowel, we don’t care about it- so do nothing!

return vowel_string

Code after a "return" doesn’t print

print "A line of code after the return!"

Note in this example how we

–	 Comment well, explaining what every line does!

–	 Return a Boolean type in the function is a vowel so that we can use that function within an if condi­
tional in the only vowels code.

–	 Return only when we know what the result is

–	 Show that any code after a return statement won’t be shown, because functions exit upon hitting a
return.

See our solutions to Hangman if you didn’t really get this in the last project.

3

MIT OpenCourseWare
http://ocw.mit.edu

6.189 A Gentle Introduction to Programming
January IAP 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

