
6.189 Final Project – Tetris! 

The format for the final project will be as follows­

•	 You will pick a partner and work on one computer together. Make sure that you email files 
to each other so you each have the code you work on! 

•	 Sit next to each other in lab. There will be an LA assigned to your area who will keep track 
of your progress and walk you through more difficult sections of the code. 

•	 Both you and your partner must attend 2 of the 4 available recitation sections on Thursday 
and Friday. There are two Checkoffs that you and your partner must complete with an LA 
for you to get credit for doing this project. Checkoff 1 must be done in Thursday’s lab section. 
Checkoff 2 must be done by Friday. If you just do the the checkoffs you won’t complete the 
game, so it’s worth it to work ahead on your code! 

•	 Wednesday & Thursday we’ll meet in the lecture hall for a brief reviews; on Thursday, we’ll 
also review the answers to the ‘exam’ passed out during Tuesday’s lecture, if you choose to 
do it. 

Game Play 

The goal of the project is to implement the basic game play described below. 

The game starts with an empty board drawn. The board is typically 10x20 squares. The top left 
corner square of the board has coordinates (0, 0) and the bottom right corner square has coordinates 
(9, 19) (the y-axis is still flipped). A randomly chosen Tetris piece from the seven possible shapes 
is drawn at the top of the board. The piece starts falling at regular intervals - one square at a time. 

Basic Rules 

1. The piece cannot fall into a square occupied by another piece or beyond the edge of the board. 

2. When a piece hits another piece or the bottom of the board, it stops moving and a new piece 
appears at the top of the board. 

3. As the pieces fill up the board lines form. If a complete line forms, it disappears and all the 
blocks above it fall down one line. 

4. If a new piece can no longer be placed at the top of the board, the game ends and a “Game 
Over!” message is displayed. 

1 



User Interaction 

The user can use the arrow keys to move and rotate the pieces - ‘Left’, ‘Right’, ‘Down’ arrow keys 
move the piece left, right and down by 1 square respectively. The ‘Up’ arrow key will rotate the 
piece. The user can also drop a piece by pressing the spacebar. Dropping a piece means that the 
piece will fall down until it can no longer move and the user can longer rotate or move it in any 
other direction. When the piece is moved or rotated, it cannot move into another piece or over the 
edge of the board. 

Project Design 

We already had a bit of a head start. Last week, we created objects for the all the tetrominoes 
that had the functionality to be drawn on the screen and Project 2 used the same game board 
framework as Tetris. As discussed in lecture, we have prepared a starter file that has all the class 
and method definitions, but you will have to implement the methods to make your game work. We 
will do this step by step - starting small and extending the game features as we go along. You’ll 
work with your partner and your LA to try your best to implement the methods; we’ll periodically 
email out code to the whole class to help you along with the trickier bits. 

Most of the methods that you need to implement have just one statement, pass, that tells Python 
that the method doesn’t do anything currently. All the places where you will need to add code 
have a comment ‘YOUR CODE HERE’. At the end of the project, you should have code in all 
the places where you find this comment. 

READ ALL THE INSTRUCTIONS IN A GIVEN SECTION BEFORE YOU START 
WRITING ANY CODE. MAKE SURE THAT YOUR CODE WORKS BEFORE 
MOVING ON TO THE NEXT SECTION. 

1. Tetris Classes Overview 

Get a copy of the file tetris template.py from the course webpage. 

Take a look at the file. Besides the Block and Shape classes you implemented yesterday, there are 
two additional classes - Board and Tetris. The Board class implements the functionality of the 
Tetris board. The Tetris class implements the game play, i.e. it serves as a game controller. 

Read through the file and familiarize yourself with the different classes and their attributes and 
methods. Take a look at the Block and Shape classes as well since they also have some additional 
attributes and methods. Feel free to change the color of the shapes! 

In Homework 4 you used the GraphWin object to create a window where you can draw objects. 
The GraphWin is a Window object with a CanvasFrame object in it. For our Tetris project, we will 
create a Window object and we will place a CanvasFrame in it explicitly. The Board class has an 
attribute canvas that is a CanvasFrame object. This is where the shapes will be drawn. 

Run your code and make sure the empty board appears on the screen. 

2 



2. Creating a random shape 

Let’s make things a bit more interesting. Implement the Tetris.create new shape method, i.e. 
the create new shape method in the Tetris class. It should create a new randomly chosen shape 
object and return it. If you have forgotten about random numbers, go back to Homework 2 (exercise 
2.4.1). If you are having trouble using the SHAPES attribute that contains a list of the Shape classes, 
look at Homework 4, problem 3 for help. 

You will need a reference to the shape later to be able to move/rotate it. The Tetris class has an at­
tribute current shape that will hold the currently active shape. Update the Tetris. init method 
to display the current shape on the board (hint: take a look at the methods of the Board class for 
help). 

Run your code and make sure you see the shape on the screen before you continue. 

3. Keyboard Events 

Before we can move the shapes around, we need to learn how to get keyboard events, e.g. when a 
key is pressed. 

If you look at the Tetris. init method. It calls the bind all method on the Window object to 
create a key binding that tells the Window object to automatically call the Tetris.key pressed 
method when the user presses a key. 

Run the code. Click on the Tetris window to make sure that the window is in focus and then 
press the arrow keys and the space bar. Notice the output in IDLE. The variable key in the 
Tetris.key pressed method has a type string and it contains the value of the key pressed. If you 
press the letter a, key will have value ‘a’. But, since the arrow keys and the space bar are special 
keys, they have the following values: 

‘Up’, ‘Down’, ‘Right’, ‘Left’, ‘space’ 

4. Moving Shapes 

Modify the Tetris.key pressed and Tetris.do move methods to make the shapes move when the 
‘Left’, ‘Right’ and ‘Down’ arrow keys are pressed. Take a look at the DIRECTION attribute of the 
Tetris class. It is a dictionary with a key that has type string and specifies the direction to move 
the shape, and a value (dx, dy) corresponding to how many units to move along the x and y axis 
respectively. Look also at the Shape.move method. 

Don’t try to implement all the functionality in the Tetris.do move method yet! - we’ll keep adding 
to this function in later sections. For now, just add code to move the shape in the appropriate 
direction as specified by the parameter. 

Run your code. Do you have a moving shape? 

3 



5. Attention! Piece overboard! 

•	 What happens if you move your piece left 10 times? 

•	 How would you ensure that the piece does not move beyond the edge boundaries? Modify 
your code so that a piece moves only if it can, i.e. if one of its blocks is about to fall off the 
edge, the entire piece won’t move. 

1. Modify the	 Board.can move method and implement part 1 described in the template file. 
Check if the position is within the boundaries of the board. Return True if it is and False 
otherwise. 

2. Modify the Block.can move method - fill in the code as described in the comments. 

3. Now	 modify the Shape.can move method (hint: this should utilize the Block.can move 
method you just wrote!). Use the Board.can move method for help. Note that these can move 
methods take an additional parameter, which is a board object. 

4. Finally, update the Tetris.do move method, so that it first checks if the shape can move before 
it moves. The method should return True if the move was performed and False otherwise. 

Run your code and make sure your pieces don’t fall off the board when hit all three of the 
edges - left, right and bottom. 

CHECKOFF 1 (Due THURSDAY): Find an LA - tell him/her who your partner 
is, and demonstrate that your code works up to here. 

4 



6. Adding a piece to the board 

Now that the pieces are no longer falling off the board, let’s continue with the game. Once a piece 
touches the bottom edge of the board, it should be added to the board permanently and a new 
piece should appear at the top. How would you know that the piece touched the bottom edge? 
How would you add the piece to the board? What would be a useful data structure? 

We are going to keep track of the state of the board using the grid attribute of the Board object. 
The grid is a dictionary where the key is a tuple (x,y) corresponding to the square at position (x,y) 
on the board. The value of this key will be a Block object (why not a Shape object?) occupying 
the square. 

Modify your code so that it adds the shape to the board, and then creates a new shape and places 
it at the top of the board. 

1. Modify the	 Board.add shape method so that it adds each block to the grid dictionary. 
Implement the Shape.get blocks method to get the list of blocks from the Shape object. 

2. Update the Tetris.do move method such that if last move that failed was ‘Down’, the method 
will: 

• add the current shape to the board, 

• update the Tetris.current shape attribute with a new random shape, and 

• draw the new shape on the board. 

3. Update the Tetris.key pressed method to make the piece drop to the bottom of the board 
if the user presses the spacebar. Remember the value of the variable key in this case will be 
‘space’. 

Run your code and make sure that when you can drop a piece and when it reaches the 
bottom, it will be added to the board and a new random piece will appear at the top. 

7. Attention! Intruders! 

What happens if a shape tries to move to a square that is already occupied? How would you change 
your code to make sure that a shape doesn’t move to a square that is already taken? 

Modify the Board.can move method to check if there is already a piece at the current position 
and return True only if there isn’t and False otherwise. Hint: Use the in operator on the grid 
dictionary to check if there is a value (eg, a block) at the key (x, y). 

Run your code and make sure the pieces don’t trample each other. 

5 



8. Rotating a piece 

Now moving a shape is easy, but how do we rotate one? What we need to know is how to rotate a 
square around another square 90 degrees. Here is a formula that can help: 

x = center.x - dir*center.y + dir*block.y 
y = center.y + dir*center.x - dir*block.x 

This formula gives the new coordinates of the Block object, block, if it is rotated around the 
Block object, center. The variable dir specifies the direction of rotation (you can find the current 
rotation direction using the Shape.get rotation dir method). If dir = 1, the block is rotated 
clockwise (cw), and if dir = -1, the block is rotated counterclockwise (ccw). In the figure below, 
the black square is the center block and the other blocks rotate around it, i.e. the black square is 
the center of rotation. 

The different pieces, however, behave differently. J, L, and T always rotate clockwise. I, S, and 
Z rotate back and forth. Z and S rotate clockwise, then counterclockwise, while I goes the other 
way. O does not rotate. To implement rotation for each of the pieces you need to know what is the 
center of rotation. The black square in the figure below shows the center of rotation for each of the 
pieces and this is the block at index 1 in the blocks attribute of the Shape object. 

1. Implement the Shape.can rotate and Shape.rotate methods. The shapes are not allowed 
to rotate off the board or into another piece. The Shape.can rotate should return False, if 
any of the blocks in the shape cannot move to its new position on the board (either because 
the position is beyond the boundaries or because the square is already occupied). 

2. Now implement the Tetris.do rotate method to rotate the current shape, if possible. 

3. Finally, modify your Tetris.key pressed method to rotate a piece when the ‘Up’ arrow key 
is pressed. 

Run your code and make sure the pieces rotate when you use the ‘Up’ arrow key. 

6 



9. Automatically moving pieces 

We learned how to use the after method on the GraphWin object to animate graphics objects. We 
can use the same method on the Window object as well (take a look at the Tetris.animate shape 
method). The method will move the shape down one square once every second. 

Modify the Tetris. init method to start animating the shape once it is drawn. 

Run your code and make sure the piece falls down on its own. 

CHECKOFF 2 (Due FRIDAY): Find an LA and demonstrate that your code 
works up to here. 

Now your game should be almost fully functional... Almost! 

10. Removing completed lines 

When a new shape is added to the board, we need to check if there are any new rows that were 
completed and need to be removed. If a row is complete, i.e. all the squares are occupied by blocks, 
it is deleted. Then all the blocks above are moved 1 square down. 

The Board class has several methods to help with implementing this feature - delete row (deletes a 
row), is row complete (returns True if all squares in the given row are occupied), move down rows 
(moves all rows above the given row inclusive down one square), and remove complete rows (checks 
if there are any complete rows and removes them, and then moves all rows above down one). 

1. Implement all the four methods described above.	 Recall the del command for dictionaries, 
listed in the dictionary “cheat sheet” of Exercise 3.3. 

2. Then, modify the	Tetris.do move method so that every time a shape can no longer move 
and is added to the board, it checks if any rows have been completed and removes them. 

Run your code and make sure that your game removes completed rows correctly! 

7 



11. Game Over 

Final touches... 

Before placing the new piece on the board, you must check if the piece can be placed into that posi­
tion. If it can’t the game is over, and you should display a “Game Over” text message on the board 
and stop placing new pieces on the board. (Hint: look at the implementation of Board.draw shape 
- can you use this to help you figure out when the game is over?) 

1. Implement the	 Board.game over method to display the “Game Over!!!” message. If you 
didn’t do the digital clock problem from Homework 4, or you forgot how to draw text, look 
at the optional exercise on that assignment. 

2. Modify the Tetris.do move to display the game over message, if the new shape could not be 
drawn on the board. 

Run your code and make sure that your game over message appears on the screen when 
you cannot add any more pieces to the board. 

CONGRATULATIONS! You now have your very own Tetris game. 

Bells and Whistles (Optional) 

If you would like to make your game a bit fancier, here are a few possible extensions you may want 
to try at home. There is no help in the starter file for these. You will have to write any classes or 
methods necessary yourself. You might also need to modify some of the existing methods. 

1. Scores and Levels 

Modify your game so it keeps track of the score as the user is playing. You can pick your own 
strategy for scoring the game. In general, you might want to give extra points if the user removes 
multiple rows at once and perhaps a hefty bonus if they remove 4 rows at once (that’s called a 
Tetris). Create a ScoreBoard class that will create a new CanvasFrame object where the score will 
be displayed. Take a look at the Board class for example of how to do that. The CanvasFrame 
objects are displayed below one another in the window. So, depending on whether you want to the 
scores to be displayed above or below the tetris board, you will have to select the order in which 
the Board and ScoreBoard objects are created. 

Think about what methods you would need to add to the ScoreBoard class and what objects it 
will have to interact with to be able to keep track of the score. 

You can also add different levels. For example, if the user’s score passes a certain threshold, they 
will move up a level. Moving up a level means that the pieces start falling down faster. Look at 
the Tetris object to figure out what attributes you would need to modify to make the pieces fall 
faster. Make your ScoreBoard class keep track and display the current game level as well. 

8 



2. Piece Preview 

To aid your game play, create a preview for the upcoming piece. Create a PiecePreview class 
that will also create a CanvasFrame where the next piece will be drawn. You need to figure out 
what methods will be necessary to communicate between the Tetris object and the PiecePreview 
object in order to both display the next piece and update the current piece when it is necessary. 

3. Pause Game 

Modify your game so that when the user presses ‘p’ or ‘P’, the game will pause until the user presses 
‘p’ or ‘P’ again. By pause, we mean 

•	 the piece will stop falling automatically 

•	 the user will not be able to move or rotate the piece by pressing the arrow keys while the 
game is paused 

•	 there will be a message displayed on the board that says the game was paused and how to 
resume play. 

4. Border around the board 

Add a border of one or two squares around the board as in the snapshot below. This might be 
trickier than it sounds. 

9 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.189 A Gentle Introduction to Programming 
January IAP 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



