
Page 1


6.189 – Notes 
Session 8 

Day 6: Immutable Objects 

Earlier, we made a big deal about the fact that lists are mutable. The reason this is important is because 

certain objects are immutable – once created, their value cannot be changed. 

Strings are a prime example of this. Although we treated strings the same as primitives like integers and 

booleans earlier, strings are actually objects. 

Why did we do this? Think about this: if an object is immutable, it doesn't matter whether two variables 

are pointing to the same string or two different strings with the same value! Thus, while strings are 

actually immutable objects, we can treat them as we have before – as primitives. The only new meaning 

this revelation has is that like lists, strings have member functions. 

For strings (and tuples, when we get to them), its easiest to think of them like primitives – directly 

stored in the variable table. 

Day 6: Strings Revisited 

Most of the member functions in lists modified the list and had no return value. Strings are immutable, 

though – how do string member functions work? It turns out that member functions of strings tend to 

return a new string. 

Program Text: 

message = "Hello" 

print message 

message.lower() #no effect 

print message 

message = message.lower() 

print message 

Output: 

Hello

Hello

hello


Note: lower() is a function that converts a string into lowercase. 

Here is a list of some useful string functions. Don't try to memorize these! Even I don't remember them – 

instead, when I need to look up a function I go to the Python Quick Reference website shown in class 

(and on the website.) 



Page 2 

A quick reminder before starting: remember that "A" and "a" are completely different characters! 

When writing functions that manipulate strings, its generally a good idea to deal with a single case 

(usually lowercase). 

Functions that return a new string 

­ str.capitalize() / str.lower(). Returns a copy of str with all letters converted to 

uppercase / lowercase. 

­ str.strip(). Returns a copy of str with all whitespace (spaces/tabs/newlines) from the

beginning and end of the string removed.


Example: " test ".strip() == "test".


­ str.replace(old,new). Returns a copy of str with all instances of old within the string

replaced with new.


Example: "hallo all!".replace("al", "el") == "hello ell!".


Functions which return information about a string 

­ str.count(substring). Returns the number of times substring appears within str. 

­ str.find(substring) / str.rfind(substring). Returns the position of the first instance of 

substring within str. rfind returns the position of the last instance of substring. 

­ s.startswith(substring) / str.endswith(substring). Returns True if the string starts 

with / ends with substring. 

Example: "Hello".startswith(“he”) == False, but “Hello”.endswith(“lo”) == True 

Functions which transform the string into other types 

­ str.split(separator). Returns a list of words in str, using separator as the delimiter string.

Example: "hello world, Mihir here".split(" ") returns


["hello","world,","Mihir","here"].


Example: "mississippi".split("s") returns ["mi", "", "i", "", "ippi"].

­ separator.join(seq). This one is tricky. It takes a list of strings seq and combines them into a 

string. Each element in seq is separated by separator in the returned string. 

Example: " ".join(["hello","world"]) == "hello world" 

Day 4: Tuples 

Tuples are the immutable counterpart of lists. Unlike a list, tuples cannot be changed. 

Why/where are tuples useful? Think of a tuple as multi-dimensional data -- just like you can store an 

integer 5 in a variable, you can also store a two-dimensional coordinate (6,-3). You'll develop an 

instinct for when to use tuples versus lists as you continue in course 6 – just remember that it tends to 

be much easier to use tuples whenever you can get away with it. 

You can create tuples by using parentheses: (1,3,8) creates the tuple with elements 1, 3, 8. As you 

should expect, tuples are ordered: (1,3) != (3,1) 



uple (a tuple with one element), you can use

5

se three formats using

that

teger), whereas the latter is a tuple that contains three elements.

ered in the next

ples of sequences

e of characters.

nything

e syntax.

e item (or character) at the

length of a sequence.

eq

ring, e.g.

plus operator to

some integer

ach ch

pic of this class:

. Where lists stored a sequence of items, dictionaries store a table.

If you want to create a singleton le(5)

(5,) ! mer is a tuple and

(4,6) != [4,6 ,

convert between th st(x)

You can nest tuples in tuples! Not uple that contains

two elements (one tuple and one i ree elements.

will be co

Lists, strings and tuples are all exa he case of strings,

you can think of them as a sequen

Sequence isn't an official term or e are very similar.

In fact, they share much of the sa

will return t

returns the

equence

x in

eck if a substring is in a s

. You can use th me type. You can

times fo

. We learned that the any sequence

for strings, it iterates through

And so we come to the last major t are an mutable

object that we can use to store dat es store a table.

tu

they have completely different types (the fo

one is a tuple and the other is a list. Similarl

l

the former is a

two elements (one tuple and one integer), whereas the latter is a tuple that contains t

of ordered items. In

on that all three of the

[0:3] =

is equal to

combine two sequences of the s

actually works on

. Like lists, dictionarie

object that we can use to store data. Where lists stored a sequence of items, dictionar

Page 3 

If you want to create a singleton t tuple (a tuple with one element), you can use tup ple(5) or use the 

notation (5,). Note that (5,) != = 5 – they have completely different types (the for rmer is a tuple and 

the latter is an integer. 

Also note that (4,6) != [4,6] ] – one is a tuple and the other is a list. Similarly y, ("a","b") != 

"ab". You can convert between the ese three formats using str(x), tuple(x), and liist(x), though. 

You can nest tuples in tuples! Note e that ((1,2),3) != (1,2,3) – the former is a t tuple that contains 

two elements (one tuple and one in nteger), whereas the latter is a tuple that contains thhree elements. 

Notation for using tuples will be covvered in the next section. 

Day ?: Sequence notation 

Lists, strings and tuples are all exam mples of sequences – a series of ordered items. In t the case of strings, 

you can think of them as a sequenc ce of characters. 

Sequence isn't an official term or a anything – just an observation that all three of thes se are very similar. 

In fact, they share much of the sam me syntax. 

­ Indexing. seq[i] will return th he item (or character) at the ith position.


­ Length. len(seq) returns the length of a sequence.

­ Slicing. You can slice sequences s the same way you sliced lists. "hello"[0:3] == = "hel"


­ in, not in operators. x in s seq is True if and only if an item of seq is equal to x. For strings, you


can check if a substring is in a sttring, e.g. "ello" in "hello" returns True. 

­ Concatenation. You can use the e plus operator to combine two sequences of the sa ame type. You can 

use * to duplicate it n times for r some integer n, e.g. "Yay! " * 5 

­ For loops. We learned that the for operator works on lists. for actually works on any sequence – 

for strings, it iterates through e each character in the string. 

Day 7: Dictionaries 

And so we come to the last major toopic of this class: dictionaries. Like lists, dictionaries s are an mutable 

object that we can use to store dataa. Where lists stored a sequence of items, dictionariies store a table. 



Page 4 

Note that dictionaries are considered to be unordered – it doesn't matter what order we list entries in. 

We call the names on the left keys and the values on the right values. 

You can store primitives and immutable objects (like strings and tuples) as keys. You can store anything 

(e.g. lists) as a value. 

As we go through the dictionary notation, notice that a lot of it is consistent with the sequence notation 

above – the notation below should seem intuitive to you. Remember that dictionaries are fundamentally 

different from sequences, though – especially the fact that dictionaries are unordered. 

­ You can create a new dictionary using curly braces. 

Example: example_dict = {} creates an empty dictionary 

Example: example_dict = {"a":5, "test":[1,2], 27:"Test"} creates the above table. 

The amount of spacing around the colon : is irrelevant. 

­ len(d) works on dictionaries too - use it to find the number of entries in the dictionary (the above 

dictionary has length 3.) 

­ To access or change a value, use the same index notation.


Example: print example_dict["a"] prints 5

Example: example_dict["a"] = 7


Note that this implies that a dictionary cannot contain two identical keys – writing


example_dict["a"] = 7 would just change the value that a is mapped to. This should make

sense, though – remember that dictionaries are unordered. Also, you can have a dictionary with


identical values.


­ Use del example_dict["a"] to remove that entry from the dictionary. 

­ k in d will return true if the dictionary d contains an entry with key k.


Example: (27 in example_dict) == True


Example: (5 in example_dict) == False


Day 7: Dictionary Member functions 

Like other objects, dictionaries have member functions. You don't really need to use these much, though 

– here are a few that might be useful 

­ d.clear(). Removes all items from d.


­ d.copy(). Returns a copy of the dictionary d.

­ d.pop(k). Removes the entry with key k and returns its corresponding value. This is just like del


d[k], except that the function also returns the value of d[k]. 

Day 7: For loops and dictionaries 

Remember how k in d will return True if k is mapped to something? You can also use for loops with 

dictionaries. For loops will iterate over all the keys in the dictionary: 



Page 5 

Program Text: 

example_dict = {"a" : 5, "b" : True} 

for k in example_dict: 

print k, ";", example_dict[k] 

Output: 

a ; 5 

b ; True 


