6.189 - Intro to Python
IAP 2008 - Class 6
Lead: Aseem Kishore

Lab 7: Introduction to Objects

Problem 1 — Exploring values and references

So far, we have used variables with types int, float, bool, string, list and tuple. It turns out that
some of these are treated as values, whereas others are treated as references. To understand
what this means and what it implies for how we program, this problem will help you explore the
various types.

Start a new Python shell (or restart an existing one), and type in the following:

a
b

anython11
szython11

| told you that in this case, a and b actually refer to the same object in the heap. But how do you
really know? Python provides an “id” function that takes a variable and returns the memory
address of the object that's actually referenced.

Try this:

print 1d(a)

print 1d(b)

print id(a) == id(b)

So it turns out the two are in fact the same. We can compare in a more concise way — Python
provides an “is” keyword that tells us if two variables reference the same object or not.

Try this:
print a is b

Now try the same code above on something different. Instead of “python”, try the number 5, the
number 5.0, and the boolean True. What do you find?

In all of the above cases, you can see that all those values (“python”, 5, 5.0, True) do in fact
have memory addresses. In fact, every single value in Python has a memory address. For these
basic types, however — string, int, float and bool — we will treat them as primitives, meaning
that we won't consider them as objects for the most part (strings are the only exception). We'll
understand why soon.

Question 1 — What happens if you say:

5
5.0

a
b

Are a and b still referencing the same memory address? Do they evaluate to different



numerical values? To answer, try these two lines:

print a is b
print a == b

Interesting! So as a general law — objects of different types will always reside at different
memory addresses. So, a is b will always evaluate to False if a and b are different types. This
also tells you — don’t use “is” if == will do.

Now, let's explore lists. Try this:

a
b

[1, 2, 3]
[1, 2, 3]

Are they the same object? Again, you can check with the “is” keyword, or see their actual
memory addresses with the “id” function:

print id(a)

print id(b)

print id(a) == i1d(b)
print a is b

And again, let's check if they're treated as equal:

print a ==

So lists are treated differently from other things we’ve seen. They’re different objects, but like
math, they will be equal if they are made up of the same elements. Let’s really check that
they're different objects:

a[l] = 70

print a

print b

print a ==

Changes made to one list don't affect the other!

Question 2 — What happens if you say:

a
b

[1, 2, 3]
a

Are a and b referencing the same object? Are they equal? What happens if you change
list a, does list b change as well?

This concept is called aliasing, where two variables reference the same object. With the
primitive types that we saw above, Python automatically aliased our variables if they were the
same value and type. With lists, we have to explicitly alias if we want the same object.

Question 3 — Are tuples aliased automatically, like primitive types, or do we have to
explicitly alias them like lists?



Problem 2 — Exploring mutability

From this point on, we need to be consistent with our terms, and we need to be solid on
understanding how the computer thinks and works:

- To assign a value to a variable means something like:
5

“hello”
[1, 2, 3]

X
y
z

- To modify or mutate a variable means something like:
z_.append(4)

In general, assignment occurs with the assignment operator (=), and modification/mutation
occurs with member functions — we haven't really learned about these yet, but they occur with
the member operator (.) followed by a function that the object supports. In this case, append is a
function that all list objects support.

However, to make things more confusing, there are statements like these:

z[2] = “three”
del z[1]

The first statement looks like an assignment, and it is — it's an assignment to a variable inside a
list (remember, lists are collections of variables — they’re useful when we have a dynamic
number of variables). However, we don't really care about that aspect. Instead, we care more
that the first statement is ALSO a modification — it modifies the list z. Same with the second
statement. So for now, treat list index assignment and deletion as modification.

From these definitions, we say that an object is mutable if it (the object itself) can be changed in
any way. Similarly, we say that an object is immutable if it can’t be, i.e. it doesn’t support any
operations or functions that mutate it.

So, back to what we were doing. We've found that strings are aliased automatically for us, while
lists are not. And we've found that tuples are also automatically aliased!

Remember how we said strings and tuples are similar? This is no different. Both are arguably
complex objects (you have to keep track of how many elements/letters you have, and
dynamically allocate that much space for them — yes, strings and tuples are implemented on the
inside with some sorts of lists!).

However, because both are immutable types (as in, we can’t modify any string or tuple), and
because both are commonly used repeatedly, Python saves memory by aliasing automatically.
But because lists are mutable, Python does not dare alias.

Just like we have objects that are mutable and immutable, we can specify it further. Since we
know mutability is caused by functions or operations that change an object, we can specify
whether functions will cause an object to be mutable or not.



We say a function is a pure function if it makes no modifications to the object it's working on.
Similarly, we say a function is a modifier function if it does. Another way of referring to these
functions is that they have side effects.

Why the term side effects? We've been teaching you guys to think of functions as similar to
math functions — in general, you shouldn’t take input from within a function, and you shouldn’t
print stuff from within a function. Instead, you should return a value, and the function will get
evaluated to that value, just like sqrt(4) gets evaluated to 2.

Well, this style is so important that in computer science, it's natural to think of functions as these
mathematical-type functions. So when they do anything other than simply return a value —
anything that we can notice after the function is done executing — we consider those to be side
effects. And when a function has side effects, it should be clear to know.

We know that strings and tuples are immutable, so none of the operations or functions they
support should have any side effects. We’'ll explore some of these operations and make sure.

Try these:

“hell0”
t a.index(““e”) < prints the index of the first “e”

5 3 3 5

The first function, index, makes sense — we don't expect it to change the string since we're just
finding an element, not changing it. But what about upper? As you can see, upper doesn't
change the string a. Instead, it returns a new string.

This is a design pattern you'll see over and over — when objects are immutable, then they will
often have these types of factory functions (or creators) that return new objects rather than
modify the original.

Now let's explore lists. We know that lists are mutable, so we expect that some functions will
have side effects.

Try these:

B} ‘y, i ‘Z’]
.count(y’) < prints how many occurrences of ‘y’ there are

-reverse()

Again, we didn’t expect count to change the list. But what about reverse? This function actually
modified b, so we say that a side effect of reverse is that the list b is reversed. But what did that
line print?

Try this:

c = None



print c

print type(c)
print c == False
print c ==

None is a special type in Python that literally represents the idea that there is nothing here. In
other languages, the same idea is often given the name “null”. It is equal to nothing else, and
the only way to refer to it is by its value, None.

Question 4 — Is None aliased automatically by Python?
Getting back to mutability, we saw that the line printed None. Try this:
print b.reverse() == None
Remember, we call functions by putting parentheses after the function name (optionally with
arguments inside; in this case, reverse doesn’t take any arguments). And when we call a
function, if it returns anything, the function gets evaluated with the return value.
So does this mean that reverse returns None? Maybe, we don’t know. It turns out that if a
function doesn’t specify a return value (i.e. by explicitly declaring return before the function

is finished executing), then Python evaluates the function to be None.

This leads to another common design pattern — when functions have side effects, they will often
return None to make their purpose explicit.

Question 5 — Try this:

x = [1, 2, 3]
X = x.append(4)
print x

What gets printed? Why? How do we fix it if we want x ==[1, 2, 3, 4]?
Question 6 — Now try this:
[1, 2, 3, 4]

y =
print y.popQ)
print y

Has y changed? Or did pop return a value? Why? If you're confused, try this:
help(y-pop)
With the last example, you can see an example of an exception to the regular design pattern.
But that's fine — as long as the side effect is made explicit and clear, having a useful return

value is not a problem. But the opposite is not fine — don’t have any side effects if the user does
not expect them, and instead expects a return value.



Problem 3 — Exploring scope

Now that we understand references and aliasing and mutability, let's add one more element and
then put it all together.

Make sure you are comfortable with the concept of local variables. Draw stack diagrams if they
are useful. Now, we'll apply the same idea of local variables inside functions, but we’ll observe
whether the local variables are references or values.

Try this:

def foo(X):
print “point 2:”, 1d(X)
x = [1, 2, 3]
print “point 3:7, 1d(x)

L =[1, 2, 3]

print “point 1:”, id(L)
foo(lL)

print “point 4:”, id(L)

We see that when L is passed to the function foo, it is passed by its reference. Just like when
we think about scope normally, inside the function foo is a local variable x. Initially, x becomes
whatever L evaluates to — which is the reference to the actual list object. However, when we
re-assign x, we're only changing the value of the local variable x. And again, since lists aren’t
aliased, x now points to a different object. And, as we expect from scope, when we exit the
function, the original variable L didn’t change its value.

Question 7 — Try this subtle variation instead:

def foo(L):
print “point 2:”, id(L)
L =[1, 2, 3]
print “point 3:”, 1d(L)

L =[1, 2, 3]

print “point 1:”, id(L)
foo(L)

print “point 4:”, id(L)

What happens? Is it the same as above? Why or why not?
Question 8 — Try another subtle variation instead:
def foo():

print “point 2:”, id(L)

L =[1, 2, 3]

print “point 3:”, 1d(L)

L =[1, 2, 3]
print “point 1:”, id(L)



foo()
print “point 4:”, id(L)

What happens? Is it the same as above? Why or why not?

So far, this has had nothing to do with mutability, but it does confirm that scope works with
values just as it works with references — assignments to local variables inside a function will not
change the value of variables declared outside the function.

And another important point — a variable will first be looked up in the local frame/stack, and if it's
not found, then it will be looked up in an outside stack. The last part is a little trickier than we
think, so won't worry about the details. Just remember that Python will always first look for the
variable in the local stack.

Now let's explore mutability with scope. Remember that modifying an object is different from
assigning a variable.

Question 9 — Try this:

def foo(X):
print “point 2:”, 1d(X)
X.append(4)
print “point 3:”, 1d(X)

L =[1, 2, 3]

print “point 1:”, id(L)
foo(lL)

print “point 4:”, id(L)

What happens? Are the lists the same, or different? Why or why not?
Question 10 — Try this:

def foo(X):
print “point 2:”7, X
X.append(4)
print “point 3:”, X

L =[1, 2, 3]

print “point 1:”, L
foo(lL)

print “point 4:7, L

Has L changed after the call of foo? Why or why not?
This example shows us that when we pass objects to a function, any modifications to those
objects will persist beyond that function. Why? Because we're passing the reference to that

object, so the local variable x inside the function will refer to the same object.

Great — now you understand how to work with objects! Since objects are really useful for
abstraction, you're now ready to tackle some really interesting problems.



