
Performance Engineering of Software Systems September 29, 2010 

Massachusetts Institute of Technology 6.172 

Professors Saman Amarasinghe and Charles E. Leiserson Handout 7 

Iterative Performance Optimization 

Project 2-2 

Iterative Performance Optimization
 

Last Updated: October 18, 2010 

In the first part of this project, you learned about the performance characteristics of a number of rotation 

and sorting programs. In this part, you will implement your own programs to solve these problems. Be sure 

to keep in mind the lessons that you learned from the first part and the material that we have been covering 

in lecture; all of this will help you design and perfect fast solutions. 

Approaching this assignment 

Now that you have profiled and inspected the application binaries left behind at SnailSpeed, Ltd., you are 

ready to re-implement your own versions of these applications. After closely examining SnailSpeed’s needs, 

you have decided that it is sufficient to implement rotation and sorting programs that operate on 32-bit data 

only. Your goal is to implement a number of versions of the two programs and present the best versions to 

your boss. 

Getting the code 

You each have been given a new project2.2 repository with the code for this assignment. As before, you 

can get the project code using git: 

% git clone /afs/csail/proj/courses/6.172/\
 
student-repos/project2.2/username/ project2.2
 

Submitting your solutions 

As before, submit your write-up on Stellar and your code with Git before the deadline stated above. Re­

member to explicitly add new files to your repository before committing and pushing your final changes. 

git add <new-files>
 
git commit -a
 
git status
 
git push
 



2 Handout 7: Iterative Performance Optimization 

If git status shows any modified files, then you probably haven’t checked your code into your repository 

properly. 

In keeping with good programming practice, you should check in incremental changes to your repository 

as you write and test your code. We were lenient with students who had problems pushing their changes for 

the first project, but we will henceforth expect you to submit your code properly by the due date. 

A quick note about git commit -a: this command will commit all modifications to tracked files to 

your local repository. If you only wish to commit changes to certain files, you can git add them explicitly 

and git commit will commit only files that have been manually staged (use git status to check what’s 

been staged). If this is confusing, please just stick to git commit -a. 

Writeups 

For the beta, we ask you to submit as small writeup with the goal of helping the staff (who understand the 

assignment and its general strategies but have never seen your code) to fairly grade your assignment. We 

don’t expect beta writeups to be a large formal writeup, but we suggest you include the following: 

•	 A brief overview of your design, particularly what improvements you made over the beta. This is not 

designed to replace appropriate code documentation, though. 

•	 The general state of completeness/expected performance of your implementation, as well as any bugs/­

gotchas that you are aware of. 

•	 Any additional information that you feel would be helpful to the staff in evaluating your submission 

(e.g. if you spent a lot of time on approaches that didn’t result in a speedup, etc) 

Finally, for the final submission, we expect an even shorter writeup to accompany it with: 

•	 An overview of changes you made to your beta submission, and what motivated you to do it (surprised 

with performance ranking? New revelations after master meeting? Ideas conceived before the beta 

deadline but ran out of time implementing it?) 

•	 Some comments on meeting with your MITPOSSE mentor. 

Code layout and Makefiles 

The main function for both sections of this project will be located in a testbed.c file, which you cannot 

modify (even if you do, it will be overwritten with a fresh copy during our tests). You will only modify the 

functions implemented in rotateN.c and sortN.c as specified in the following sections. You will have to 

edit the Makefiles we give you by adding new targets to the top as you implement them (it will be obvious 

what to do when you read them). 

The Makefiles will build 32-bit and 64-bit binaries as in Project 1. While the 32-bit binaries maybe be 

userful for testing on machines other than the clouds, whenever a question asks about performance, 

we want you to run your programs on the cloud machines using PNQ (use the pnqsub script to submit 

jobs). Type make run to run some simple test cases on your code. 



Handout 7: Iterative Performance Optimization	 3 

1 Image rotation 

Assume you have decided that the only way to achieve the best possible implementation of image rotation 

is to experiment with a number of different algorithms. In the real world, you will often find that this is the 

case. You will start by writing a correct but naı̈ve implementation of image rotate. (This is also usually a 

good idea; premature optimization should be avoided!) 

You should avoid increasing the optimization level to -O3 for this part. This optimization level would en­

able automatic loop reordering, which would make it harder for you to see the effect of manually reordering 

loops. 

1.1 

Run rotate1 (via PNQ) with the input sizes 511, 512 and 513 (and, say, 10,000 repetitions). How does the 

runtime scale with the number of bytes (4 per pixel) in the matrix to be rotated? How can you explain this 

behavior? (Hint: The L1 data cache is 32KB in size and 8-way associative. How might rotate1’s memory 

access pattern be causing poor cache performance?) 

1.2 

For what input sizes might this problem occur, and why does it not occur in larger matrix sizes, such as 

2048? Determine a way to avoid this problem, and implement your change. In your writeup, explain how 

the changes you made prevent the problem. 

1.3 

Duplicate rotate1.c and rename the copy rotate2.c. Exchange the inner and outer loops. You will also 

need to edit your Makefile so that it builds rotate2. We’ve left some comments in the Makefile to help 

you do this. 

1.4 

Create a rotate3.c and update the Makefile. Using rectangular blocks, implement the blocking access 

pattern you came up with in Project 2.1. Tune your block size to obtain optimal performance, and report the 

optimal block dimensions. Also include a table of the measurements that led you to this block size. Hint: 

For an input of size n = 10,000, you should be able to keep your L1 cache miss rate below 4%. 

1.5 

Create a fourth version of the program that performs the rotation using the following divide-and-conquer 

approach. 

•	 Divide the matrix into four equally-sized submatrices. 

•	 Recursively call rotate on each of these submatrices. Remember to pass the appropriate src and dest 
pointers. 

•	 When the matrix is small enough, switch over to the algorithm you used in either rotate1 or 

rotate2. 



Handout 7: Iterative Performance Optimization 4 

After you finish writing this program, tune the matrix size at which you switch over to your “base case” 

algorithm. Again, include a table of the measurements that you perform while doing so. 

You will probably want to begin by only handling cases where the input size n is a power of two. Then, 

generalize so that your program can handle any n. What special case appears when n is not a power of 

two, and how can you deal with it? Hint: How will your recursive function get a particular element of a 

submatrix from memory? Hint: It may be useful for your recursive function to know what the size of the 

original matrix was. 

1.6 

In ssetranspose.c, we have provided a code fragment that uses Intel’s SSE instructions, which are a 

widely-supported extension to the x86 instruction set, to perform a very fast 4x4 matrix transpose. We use 

SSE intrinsics to ask the compiler to emit SIMD instrictions. This function takes four input arrays (each 

representing a four-element row) and four output arrays (each, again, a four-element row) as parameters. 

Think about how elements are moved when a 4× 4 matrix is transposed, and compare this to how they 

are moved when a 4× 4 matrix is rotated. (You should probably get a pen and paper and walk through an 

example.) You should see a simple relationship between the transposed matrix and the rotated one. What is 

it? Make some minor tweaks to the provided code so that it computes a rotated matrix instead of a transposed 

one, and rename the function accordingly. 

1.7 

Create a fifth program, rotate5, which extends your blocking rotate program (rotate3) to take advantage 

of this new SSE rotation function. You may assume that this program will only be given inputs whose size 

is a multiple of four. 

The SIMD instructions in this function require that the memory they operate on be aligned to 16-byte 

boundaries. As you may have noticed, the code which we provided allocates memory so that the array as 

a whole is aligned. However, if you choose to invoke your SSE rotation function on a subarray, you must 

make sure that the subarray is also aligned. If you do not, your program will crash with a segmentation fault. 

1.8 

Compare and contrast the performance of each of your implementations. Can you explain why each version 

performs the way it does? Provide well-presented data to substantiate your claims. 

Pick whichever of your rotate programs you would like us to time, copy it to rotate.c and add the 

rotate target to the Makefile. We’ll test all six of these programs for correctness (although two of them 

should be identical), but only the one you select will be tested for performance. 

Correctness 

The testbed we have given you already checks for correctness and handles timing. If you add your own 

output statements (for example, calls to printf) you should make sure that the correctness result, which is 

printed after your function returns, remains on its own line. A submission will be judged correct if it passes 

this correctness test for any input size n such that n ≥ 0. (Your last program, rotate5, is only required to 

handle cases where n is a multiple of four.) You may assume that n will fit in a 32-bit signed integer. 



Handout 7: Iterative Performance Optimization	 5 

2 Sorting 

2.1 

We have provided a simple implementation of insertion sort in sort1.c. Improve its performance by 

modifying the inner loop, which shifts data elements to make room for insertions. You may want to try 

using a sentinel test, as described in lecture; this will reduce the number of operations necessary to test the 

loop bound. Hint: You may wind up needing to duplicate the body of the loop. 

2.2 

We have provided a simple implementation of quick sort in sort2.c. Improve its performance. At the very 

least, you should implement the following ideas. 

•	 Hybridize the algorithm by switching to insertion sort when the size of the array is small. Determine 

and report the size at which it is best to make this switch. 

•	 Optionally, try switching to other sorting methods. (You saw several interesting options in Project 

2.1.) 

•	 Eliminate one of the recursive calls by introducing a loop that allows quick sort to continue sorting 

one of the two subarrays within the same function invocation. Which of the two arrays should be 

passed to the recursive call? Why? 

•	 Quick sort’s worst-case O(n 2) time complexity occurs when it sorts arrays which are already sorted. 

Can you protect yourself from this case by changing how you select a pivot? You might also consider 

looking at more than one possible candidate and selecting your pivot from among them. (Your solution 

will still be prone to the worst-case complexity, just not in the (possibly common) case that the array 

is already sorted.) 

Comment on the effect of the optimizations and the performance improvements you see. Provide data to 

support your claims. 

2.3 

In sort3.c you will find an empty sorting function. Implement a least significant digit radix sort. You may 

want to read the Wikipedia article on radix sort. 

For simplicity, you can use the statically allocated 2D arrays already created for you to implement your 

bucket queues. Experiment with different radix sizes. Which size performs the best? 

2.4 

As you saw in Project 2.1, radix sort has poor cache behavior because it inserts data into each queue in an 

unpredictable manner. You can reduce the number of cache misses by prefetching the tail of a queue as soon 

as you compute the bucket that an element must be moved into. Use the prefetching function presented to 

you in the code to perform such prefetches. 

Comment on whether you see any improvements in performance. 



Handout 7: Iterative Performance Optimization 6 

2.5 

Compare and contrast the performance of each of your sorting algorithms. Can you explain why each 

version performs the way it does? Provide well-presented data to substantiate your claims. 

Pick whichever of your sorting programs you would like us to time, copy it to sort.c and add the sort 
target to the Makefile. We’ll test all four of these programs for correctness, but only the one you select will 

be tested for performance. 

Please note that the sorting program you submit for performance testing does not have to be one of the 

three described above. You may use any and all techniques at your disposal to implement the fastest sorting 

algorithm possible. Several concepts covered in recent lectures will probably be of use. Good luck! 

Correctness 

The testbed we have given you already checks for correctness and handles timing. If you add your own 

output statements (for example, calls to printf) you should make sure that the correctness result, which is 

printed after your function returns, remains on its own line. A submission will be judged correct if it passes 

this correctness test for any input size n such that n ≥ 0. You may assume that n will fit in a 32-bit signed 

integer. 

For this assignment, we will not ask that you submit additional test cases; there is no grading component 

for test coverage. Still, you are highly advised to write unit tests to test individual parts of your implemen­

tation, and to test your implementation with data which is not randomly distributed. We will likely include 

some non-random data in the test suite used to measure your performance grade. 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.172 Performance Engineering of Software Systems 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



