6.170 Tutorial 8 - Rails Testing

Prerequisites
Is of this tutorial

Resources
Topic 1: Why Test?
Topic 2: Testing in Rails
2.1 Hello World
2.2 Unit Tests
2.3 Functional Tests
2.4 Integration Tests
2.5 Stubbing and Mocking
Topic 4: Wrap Up
Notes on Submitting Tests %

Prerequisites

1. Basic understanding of how a Rails App works
2. Have completed Project 1 and 2

Goals of this tutorial

1. Understand why we need testing in developing applications

2. Know the distinctions between the three main types of tests (unit tests, functional tests,
and integration tests) in Rails

3. Able to write basic tests for non-trivial model and controller methods.

Resources

e http://ofps.oreilly.com/titles/9780596521424/testing id64728.html
e http://quides.rubyonrails.org/testing.html
e http://api.rubyonrails.org/

Why Test?

In the context of a small class project, writing automated tests probably seems like a waste of
time. However, writing tests becomes extremely valuable once you start collaborating with other
programmers on a live-deployed project.

http://ofps.oreilly.com/titles/9780596521424/testing_id64728.html
http://guides.rubyonrails.org/testing.html
http://api.rubyonrails.org/

Automated testing saves time: yes, writing tests initially takes more time. However, if
you plan on developing or maintaining your product over an extended period of time, the
savings add up.

Automated testing improves reliability: in website development, it is popular to deploy
new features in short release cycles (2 weeks, 1 week, even daily). When using a
continuous integration server for deployment, when bugs are detected, the deploy
process is automatically stopped, preventing the user from being exposed to a buggy
product. This is especially important with dynamic languages such as Ruby and
Javascript because there is no static compilation step to catch syntax or type errors.
Automated testing improves collaboration: It is difficult for developers to keep track of
what their colleagues are doing. By committing regularly and running the automated
tests, developers get instant feedback as to whether their commit broke somebody else’s
code.

It may be difficult to decide what to test. 100% code path coverage is simply a waste of time.
Here are some common sense guidelines to get you started.

Write tests for all external APIs. They may be publicly facing APIs, or internal APIs
between different development teams (client team vs server team). Developers who are
trying to integrate with your APIs can use the tests as documentation for that specific
endpoint.

Write tests for the mission critical subset. The mission critical subset depends on the
business. For example, a high-capacity banking would have a large mission critical
subset, whereas a blog would have a much smaller one (if any).

Refactor code to minimize tests, and learn from best practices. How does one go
about proving that one’s code is not vulnerable to SQL injection attacks? It would be silly
to try to write a test for every single possible input field on the website. Instead, we can
use the following invariant: if all of your database access was through the ORM, then
your code is safe from SQL injection attacks if and only if the ORM is safe from SQL
injection attacks. Since you are fairly certain that ActiveRecord is safe, you are fairly
certain that your application is safe. By refactoring common functionality into units (in this
case, the ORM), you can drastically reduce the burden of testing.

For the purposes of 6.170, you are not expected to write nearly as many tests you might write in
a continuously deployed, production environment. We are only interested that you can identify a
few critical operations in your codebase (eg: external APIs), and write tests for those.

Automated tests are only a first line of defense. Don’t waste too much time writing automated
tests, and always remember to manually test the things that are difficult to automate. (eg,
browser compatibility, user experience)

Testing in Rails

The default rails application comes with its own testing framework. It is located in the “test”
folder:

/test
/fixtures
/functional
/integration
/unit

There are three types of tests in rails:

e Unit: test a single rails model
e Functional: test a single rails controller
e Integration: test the interaction between multiple rails controllers

What is the difference? Mostly it’s just convention to separate tests into multiple directories, but
“Functional” and “Integration” tests have some additional functionality (eg, @request and
@response) that is not accessible in the Unit tests.

Fixtures is a fancy word for sample data. Fixtures allow you to populate your testing database
with predefined data before your tests run. Fixtures are database independent and assume a
single format: YAML(a markup language well-suited for representing hierarchical data structure) .

Hello World

Here is how to write and run your first test:

>> rails new test project

>> rails generate model hello
>> rake db:migrate

>> vim test/unit/hello test.rb

require 'test helper’

class HelloTest < ActiveSupport::TestCase
test "the truth" do
assert true, "hello, this test passed"
end
def test the lie
assert equal 1, 2, "hello, this test failed"

end
end

>> rake db:test:prepare
>> rake test

Lets go through this example line by line:

1. Creating a new model using “rails generate” will automatically make a corresponding test
file in “test/unit/modelname_test.rb”

2. Each file has “require test_helper”. This imports a file located at “test/test_helper.rb”. This
is especially useful if you want to define some custom helper functions for testing.

3. Tests are grouped into classes. The class is defined to be a subclass of
“ActiveSupport::TestCase” which defines all of the “assert” statements. If you want to
define custom “assert” statements, you can reopen the “ActiveSupport::TestCase” class
in your “test_helper.rb”.

4. Each test is a function. Any function whose name begins with the characters “test” is
assumed to be a test, and will be run when you type “rake test”. Notice that there are two
ways to define a function. First, you can use the traditional “def function_name” syntax.
However, ActiveSupport::TestCase defines a “test” function which takes a string name,
replaces all the spaces with underscores, prepends “test ”, and performs an
“class_eval” (ruby metaprogramming) to add the function to the class.

5. A test consists of normal ruby code + assert statements. A full list of available assert
statements is in the Rails Guide.

6. rake db:test:prepare makes sure that the test database schema has the proper
migrations. If you have pending migrations, this command will warn you appropriately.

Unit Tests

The previous example was simple enough to code on the fly.

This next example is located in the subdirectory called “unit_test_example”.

Lets first take a look at the models:
app/db/schema.rb
ActiveRecord: :Schema.define (:version => 20121008184328) do

create table "friendships", :force => true do |t]
t.integer "user id"

t.integer "friend id"

t.datetime "created at", :null => false

t.datetime "updated at", :null => false
end

create table "users", :force => true do |t]
t.string "name"
t.datetime "created at", :null => false
t.datetime "updated at", :null => false
end

end

app/models/friendship.rb

class Friendship < ActiveRecord: :Base

attr accessible :user id, :friend id

belongs to :user

belongs to :friend, :class name => 'User',
:foreign key =>'friend id'

end

app/models/user.rb

class User < ActiveRecord: :Base

attr accessible :name

has many :friends, :through => :friendships
has many :friendships, :dependent => :destroy

def add friend(other user)

end

end

There is a many-to-many relationship between Users, using the intermediate model “Friendship”.
Hopefully this is familiar to you by now.

| decided to have two operations for my User model: add_friend and remove_friend, and a third
function, friends_with?, to determine whether two people are friends. Unfortunately, at this point
in time, | haven’t figured out how to implement the functions -- | only have a rough idea of what

they are supposed to do.

Test Driven Development (TDD), is a philosophy where one writes tests to describe behavior
before writing the code that implements that behavior. This way, the tests can be used to help
debug your code as you write it.

Side Note: A “Test Driven” approach is used not only for software development, but also in other
fields/industries like manufacturing (Toyota Production System) or even building startups (“Lean
Startup”)

Lets try this out. Here, is the file that | wrote to describe the behavior of the User model.
test/unit/user_test.rb
require 'test helper'

class UserTest < ActiveSupport::TestCase
test "add and remove friends" do
billy = users(:billy)
johnny = users (:johnny)

assert (not billy.friends with? (johnny)),

"billy should not be friends with johnny before"
assert (not johnny.friends with?(billy)),

"johnny should not be friends with billy before"

billy.add friend(johnny)

assert (billy.friends with? (johnny)),
"billy should be friends with johnny"

assert (johnny.friends with?(billy)),
"Johnny should be friends with billy"

johnny.remove friend(billy)

assert (not billy.friends with? (johnny)),
"billy should not be friends with johnny after"

assert (not johnny.friends with?(billy)),
"johnny should not be friends with billy after"
end
end

Look at the first line of the test function:
billy = users(:billy)

This somehow produces a User object named Billy. Where does it come from? In this case, we
are using things called fixtures.

test/fixtures/user.yml

billy:
name: Billy

johnny:
name: Johnny

When the test suite is run, Rails does two things for you:

1. Resets the test database and loads any fixtures.
2. Makes the fixtures available in the tests using the above syntax

Fixture files are powerful. If necessary, you are allowed to use the “erb” templating language (the
same one use for html files) to automatically generate fixture files. However, when the scope of
your tests increase (such as when you do integration tests), modeling all of the relationships
between models with fixture files can become tedious. If this becomes an issue, you should use
the factory approach to pre-populating your test database, using a gem such as “FactoryGirl”.

Tip: it is a good idea to put international characters (such as “6”) in your fixture data. It would be
embarrassing for you web application to crash simply because someone’s last name has an

accent mark.

Moving on: the rest of the test function should be straightforward. Currently, since none of the
functions have been implemented, the assert statements should fail.

The completed version of this example is located in the repository.

Functional Tests

Functional tests are for individual controllers of your application. The code for this example is
located in the subfolder called “functional_test_example”.

In this example, | am designing a webservice to help me add numbers together. It will behave
roughly like this:

Request:
GET /add?numl=2&num2=4

Response:

200

Content-Type: text/plain
6

In the case that the input is invalid, it should return with a “400” Bad Request status code
Here are the tests describing the behavior of this webservice.
test/functional/math_controller_test.rb

class MathControllerTest < ActionController::TestCase
test "add when input is correct" do
get :add, { 'numl' => -2, 'num2' => 4}
assert response 200
assert equal "2", (@response.body
assert equal "text/plain", @response.content type
end
test "add should return 400 when params invalid" do
get :add, {'num2' => 'blah'}
assert response 400
end
end

Note that like the Unit test cases, functional test cases are subclasses of
“ActionController::TestCase”. However, Rails magically gives you access to some
request/response functions and variables:

Functions:
get
post
put
head

delete
Hashes:
assigns — Any objects that are stored as instance variables for use in views.
cookies — Any cookies that are set.
flash — Any objects living in the flash.
session — Any object living in session variables.

Variables:
@controller — The controller processing the request (the object, not the class)
@request — The most recent request
@response — The most recent response

Here is the completed webservice:

app/controllers/math_controller.rb

class MathController < ApplicationController

def add
begin
nl = Integer (params|[:numl])
n2 = Integer (params|[:num2])

render :text => (nl+n2).to_s,
:content type => "text/plain"
rescue
render :status => 400, :text => "Invalid Input"
end
end
end

config/routes.rb

FunctionalTestExample: :Application.routes.draw do
match "add" => "math#add"
end

Integration Tests

Functional tests are good for testing single controller actions. However, many processes, such
as the checkout process of a shopping website, do not occur on a single controller. In such
cases, the user’s experience spans across multiple controllers, and may be quite complicated.
This is where integration tests become handy.

Integration tests, unlike Unit and Functional tests, are not generated automatically. To generate
an integration test, you must type:
>> rails generate integration test user flow

For the sake of simplicity, in this example, | am only going to have one controller. However, the
integration test will use multiple actions on that controller.

There will be two operations: login and logout

POST /login

post-condition: session[logged_in] = True, redirect_to “/welcome”
POST /logout

post-condition: session[logged_in] = False, redirect_to “/”

Note that this example will be extremely simple -- it won’t even check for passwords.
Here is the integration test:

test/integration/login_logout_test.rb

require 'test helper’

class LoginLogoutTest < ActionDispatch::IntegrationTest
test "login and then logout" do
post _via redirect "/login"
assert equal '/welcome', path
assert equal true, session[:logged in]

post via redirect "/logout"
assert equal '/', path
assert equal false, session[:logged in]
end
end

Integration tests have all of same helper methods as functional tests, plus a couple more relating
to redirection and session management. For example, the above example uses the function
post_via redirect which performs a regular POST call, but then redirects to the
subsequent page if applicable (just like a browser would). Additionally, there is an
open_session, function which executes a block of code, and then returns a “browsing

session” object, enabling you to perform integration tests involving multiple browsers. Take a
look at the Rails Guides for more details

Here is the controller that completes the above test:

10

config/routes.rb
IntegrationTestExample: :Application.routes.draw do

root

match
match
match

match
end

:to => "home#frontpage"

"login" => "sessions#login", :via => :post
"logout" => "sessions#logout", :via => :post
"welcome" => "home#welcomepage", :via => :get,

:as => :welcomepage
"" => "home#frontpage", :via => :get, :as => :frontpage

app/controller/sessions_controller.rb

class SessionsController < ApplicationController

def login
session[:logged in] = true
redirect to welcomepage path
end
def logout
session[:logged in] = false
redirect to frontpage path
end
end
Stubbing and Mocking

Tests are supposed to be quick and self-contained. Unfortunately, the websites we create often
have to communicate with external APIs (such as the Paypal) in order to function properly. How

do we write self-contained tests if our code must communicate with 3rd party APIs?

This is where the power of dynamically typed languages comes into play. Suppose we just
created a shopping website which does payment through paypal. If we had designed our code in

a modular manner, we should end up with something like this:

| Rails | | Payment | <==—=—-- | Paypal |
| Controllers |—-———-- | Module | Internet | Servers |

1"

As shown in the diagram, all communication with the Paypal Servers goes through our Payment
Module. In a production environment, the payment module would communicate with the web to
move money on paypal. However, in our development environment, we probably don’t want to be
making payments every single time we test our code. Additionally, communication with the
Paypal server requires internet connectivity, causing tests to take a very long time, especially
when one’s internet connection is slow.

The solution? Metaprogramming. Before we run the test suite, we can substitute the real
payment module with a fake payment module that doesn’t actually communicate with the Paypal
servers.

This can be done using pure Ruby, but there exist libraries that make it easier to swap out
functions on the fly. One such library is Mocha. With Mocha, the syntax for replacing a function
is:

PaymentModule.expects (:make payment)\
.with(“"100 dollars”) .returns (True)

The above code indicates the the PaymentModule is “supposed” to receive the make_payment
function call with the specified arguments. If, during the course of the test, the make payment
function does not get called, then the test will throw an error.

Wrap Up

Like many things in the computer world, web application testing has generated a cult-like
following in some circles. Just a quick glance at the testing section of the course textbook will
give you a glimpse of the strange things that people have invented to test their web applications
-- testings frameworks that read like plain english, weird exotic names --- cucumber, capybara,
etc.

Especially during rapid development when you are experimenting with different ideas, TDD may
actually be more of a hindrance than help. If TDD is not your style, just write a couple of tests for
the most critical parts of your web application. On the other hand, if you are enthralled by the
concept of integration tests that read like plain English, feel free to explore all of the weird testing
frameworks in the Rails ecosystem. Testing is supposed to make the development process
easier. If you don’t feel that this is the case, you might want to reconsider your approach to
testing.

Notes on Submitting Tests

12

To facilitate grading, make sure to delete all tests that are generated by scaffolding ar

have not been modified by you.
Make sure all tests have passed(eg. by running “rake test”) before turning in your

submission.

13

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

