6.170 Tutorial 4 - Sessions and Authentication

Prerequisites
1. Having rails installed is recommended.

Goals of this Tutorial
1. Understand the basics of cookies and sessions and how to use them in rails.
2. Basic Authentication mechanisms in rails.

Resources
http://railscasts.com/episodes/250-authentication-from-scratch
http://railscasts.com/episodes/270-authentication-in-rails-3-1
http://railscasts.com/episodes/274-remember-me-reset-password

Topic 1: Cookies

A cookie is a piece of text that a website (web server) can store on a user's hard disk. Cookies
allow a website to store information on a user's machine and later retrieve it. When the user
browses the same website in the future, the data stored in the cookie can be retrieved by the
website to notify the website of the user's previous activity. The data is stored as key-value pairs.
For example, a website might generate a unique ID number for each visitor and store the ID
number on each user's machine using a cookie file.

When your browser sends a request to a webserver it will look on your machine for a cookie file
that the same web server has set. If it finds a cookie file, your browser will send all the key-value
pairs along with the request.

The web server will receive the request and be able to access the cookie data. It will be able to
use these cookies to gather information about the user.

Additionally, the web server can send extra information with the cookie such as expiration date or
path (so the site can have different cookie values with different parts of the site).

In the broadest sense, a cookie allows a site to store state information on your machine. This
information lets a web server remember what state your browser is in. An ID is one simple piece
of state information -- if an ID exists on your machine, the site knows that you have visited
before. The state is, "Your browser has visited the site at least one time," and the site knows
your ID from that visit.

Things to keep in mind: People often share machines, cookies are easily (and often) erased,
people have multiple machines.

http://railscasts.com/episodes/250-authentication-from-scratch
http://railscasts.com/episodes/270-authentication-in-rails-3-1
http://railscasts.com/episodes/274-remember-me-reset-password

Warning: Cookies are sent with every request to the server! As a web developer, you should
avoid storing large amounts of data inside cookies. Cookies are limited to 4kb in size.

Setting Cookies

Typically, cookies are set in an HTTP response to the browser -- the server can specify in the
header that a certain cookie should be set. (Note, cookies may also be set by Javascript:
document.cookie = “key = value”)

An HTTP response header may look like this:

HTTP/1.1 200 OK

Content-type: text/html

Set-Cookie: name=value

Set-Cookie: name2=value2; Expires=Wed, 09-Jun-2021 10:18:14 GMT

The “Set-Cookie” directive tells the browser to create a cookie with that key and value, and to
send that cookie back on future requests.

E.g. a future request from the site to the server might be:
GET /spec.html| HTTP/1.1

Host: www.example.org

Cookie: name=value; name2=value2

Accept: */*

Along with key-value pairs, the server can also set cookie attributes. These attributes tell the

browser when to send the key-value pairs back. (Cookie attributes themselves are not sent back

to the server.)

Cookie attributes
e Domain and Path
o Tells the browser that the cookie should only be sent back for the given domain
and path
e Expires and Max-Age
o Tells the browser when to delete the cookie
m Expires: provide a date
m Max-Age: provide a number of seconds to persist

o If neither are specified, the default is that it will be deleted by the browser after the

user closes the browser.
e Secure and HttpOnly

o These are binary attributes -- either present or not. They don’t have an associated

value.
o Secure: tells browsers only to use the cookie under secure/encrypted
connections

www.example.org

o HttpOnly: tells browsers to only use cookies via the HTTP protocol -- e.g. don’t
allow Javascript to modify cookies. (This attribute is used extensively by
Facebook and Google to prevent some security vulnerabilities which we won'’t get
into yet.)

For example:
Set-Cookie: HSID=AYQEVn...DKrdst; Domain=.foo.com; Path=/; Expires=Wed,
13-Jan-2021 22:23:01 GMT; HttpOnly

Topic 2: Sessions
HTTP is a stateless protocol -- it doesn’t require the server to remember anything about a single
user across multiple requests.

This works fine for serving static content, but what about dynamic/customized content? For
example, a user on Amazon would want to see the same items in his “shopping cart” as he
browses from page to page. We need some way to keep track of data from such a user
session.

A common solution to this problem is using browser cookies. (Other solutions: server side
sessions, hidden form variables, adding parameters to the URL.)

Topic 3: Sessions in Rails
Rails has built-in support for keeping track of user sessions.

There are a few storage mechanisms. All of these storage mechanisms use a cookie to store a
unique ID for each session. They differ in where the rest of the data is kept.

e ActionDispatch::Session::CookieStore — Stores everything on the client.

e ActiveRecord::SessionStore — Stores the data in a database using Active Record.

e ActionDispatch::Session::CacheStore — Stores the data in the Rails cache.

If you'd like to change how you’re storing sessions you can take a look and change it in the
config/initializers/session store.rb.

The default store is CookieStore, which stores all data in the browser cookie. Note that the data
stored in the cookie isn’t encrypted, so users can read it if they wanted. However, the cookie is
signed so that users can’t modify their cookie -- if they do, Rails will not accept it.

No matter which mechanism you choose, the session will be accessible via the sessions hash.
You might set a user_id in the session hash.

user = User.find by email (params[:email])
session[:user id] = user.id

The user can then be retrieved on a subsequent call like so:
User.find(session[:user id]) if session[:user id]

Topic 4: Authentication (vs Authorization)

Authentication involves verifying that “this person is who they say they are.” For example, you
may show a photo ID to prove that you are this person with that name. On a website, you may
enter in a username and password.

Don’t confuse this with authorization! Authorization refers to answering the question of “what is
this user allowed to access” - authentication asks “who is this user?”

Topic 5: HTTP Basic Auth

If you want something cheap and don’t need much security, you can use http basic
authentication. The following line at the top of a controller will create a popup that asks for the
username and password before allowing the user to proceed to each page that the controller
opens.

http basic authenticate with :name => “dnj”, :password => “password”

If you don’t want this to apply to all methods within a controller, you can restrict it with extra
parameters:

http basic authenticate with :name => “username”, :password =>
“password” :except => [:index, :show]

http basic authenticate with :name => “username” :password =>
“password” :only => :destroy

Note that this option is insecure because your password is always sent in plaintext, and the
password is stored in the code in plaintext. We might instead choose to use https as store a
password hash instead of the password itself.

Topic 6: Secure Authentication

Rails has a built-in helper method for authentication, called has secure password. It
encrypts user passwords for you before storing them. For the API docs on

has secure password, you can refer to
http://api.rubyonrails.org/classes/ActiveModel/SecurePassword/ClassMethods.html.

We’ll do an example to see how to use it:

rails generate model user email:string password digest:string

Note that we need a “password_digest” column. This field stores the encrypted passwords.
has secure password assumes this field will exist.

http://api.rubyonrails.org/classes/ActiveModel/SecurePassword/ClassMethods.html

has_secure_password

must put “berypt-ruby” in Gemfile

adds methods to set and authenticate the entered password
adds validators to the password and password confirmation
adds authentication functionality

Run the migration
rake db:migrate

app/models/user.rb

class User < ActiveRecord: :Base

attr accessible :email, :password, :password confirmation
has secure password

validates presence of :password, :on => :create

end

The attr_accessible statement prevents the password_digest from being set from the user
registration form.

Create a users controller
rails generate controller users

app/controllers/users_controller.rb
class UsersController < ApplicationController
def new
@user = User.new
end

def create
@Quser = User.new(params]|[:user])
if Quser.save
redirect to root url, :notice => “You are signed up.”
else

ANY ”

render “new
end
end

end

Inside app/views/users/new.html.erb
<h1>Sign Up</hl>

<%= form for @user do |[form| %>
<div class=%“field”>

<%= f.label :email %>
<%= f.text field :email %>
</div>

<div class= “field”>

<%= f.label :password %>

<%= f.text field :password %>

</div>

<div class = “field”>

<%= f.label :password confirmation %>
<%= f.text field :password confirmation %>
</div>

<div class= “actions”>

<%= f.submit %>

</div>

<% end %>

We also need to let users log in, not just sign up. When we log a user in, though, we’re not
creating a new user -- we're creating a new session. We’'ll create a controller to handle
sessions.

rails generate controller sessions

app/controllers/sessions_controller.rb
class SessionsController < ApplicationController
def new
end
def create
user = User.find by email (params[:email])
if user && user.authenticate (params|[:password])
session[:user id] = user.id
redirect to root url, :notice => “Logged in”

else
flash.now.alert = “Invalid email or password”
render “new”
end
end
def destroy
session[:user id] = nil

redirect to root url :notice=> “Logged out”
end
end

The authenticate method is given to us by has_secure_password, and checks the given

password against the password in the database

app/views/sessions/new.html.erb
<hl>Log in</hl>
%= form tag sessions path do %>
<div class= “field”>
%= label tag :email %>
<%= text field tag :email, params[:email] %>
</div>
<div class= “field”>
%= label tag :password %>
<%= password field tag :password %>
</div>
<div class = “actions”>
%= submit tag “Log in” %>
</div>
<% end %>

Note: we use form_tag rather than form_for because we’re not editing a resource.

Now, we’re going to want to access the logged-in user from other parts of the site, after the user
is logged in. We can make a helper method accessible to all views, that does this.

In app/controllers/application_controller.rb
class ApplicationController < ActionController::Base
protect from forgery

private
def current user
@current user ||= User.find(session[:user id]) if
session[:user id]
end
helper method :current user
end

You can find a skeleton web app with basic user log in abilities at
https://github.com/jtwarren/session demo.

git clone https://github.com/jtwarren/session demo.git

Next Tutorial: HTML & CSS

https://github.com/jtwarren/session_demo

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

