6.170 Tutorial 3 - Ruby Basics

Prerequisites
1. Have Ruby installed on your computer
a. If you use Mac/Linux, Ruby should already be preinstalled on your machine.
b. If you have a Windows Machine, you can install Ruby using the Ruby Installer
here http://rubyinstaller.org
Note: Having completed Tutorial 0, Ruby should already be installed on your
computer.

Goals of this Tutorial
Become familiar with the Ruby programming language.

Useful Resources for Ruby

1. Chapter 4 of Ruby on Rails Tutorial http://ruby.railstutorial.org/ruby-on-rails-tutorial-book
2. Interactive Code School Tutorial http://www.codeschool.com/paths/ruby

3. Learning Ruby
http://proquest.safaribooksonline.com/book/web-development/ruby/9780596529864

[Note: Need MIT Certificate for this]

4. Programming Ruby http://www.ruby-doc.org/docs/ProgrammingRuby/

Topic 1: Basic Information about Ruby
1. Whatis it?
a. ltis a programming language invented in the mid-1990s by Yukihiro Matsumoto
b. Itis a general purpose object-oriented programming language that has a syntax
influenced by Perl/Python/Lisp
c. Similar to Python, it is an interpreted language, meaning that its code is executed
line by line during runtime (Rather than being compiled)

2. Pros of using Ruby
a. Allows for simple and fast creation of web applications
b. Access to a library of over 50,000 RubyGems
c. “Concise, Elegant, and Powerful”

3. Cons of using Ruby
a. Ruby runs quite slow compared to other languages. In fact, it can be up to 20
times slower than Java when processing
b. Poor Standard library documentation

http://rubyinstaller.org
http://ruby.railstutorial.org/ruby-on-rails-tutorial-book
http://www.codeschool.com/paths/ruby
http://proquest.safaribooksonline.com/book/web-development/ruby/9780596529864
http://www.ruby-doc.org/docs/ProgrammingRuby/

Topic 2: Ruby vs Python
1. Philosophy
a. Python was designed to emphasize programming productivity and code
readability
b. Ruby was designed to “make programming fun for its creator”

2. Object Oriented Programming

a. Both programming languages support object oriented programming

b. In Ruby, an instance of literally any type is an object. For instance, in Ruby, C
Class and Module instances are objects, with Classes and Modules themselves
being objects.

c. However, where in Ruby all functions and most operators are in fact methods of
an object, in python functions are first-class object themselves. A function in
Python is typically declared as a member of another object (typically a Class,
Instance, or Module), but can be freely passed around and attached to other
objects at will.

3. Syntax
a. Python has nice functional features such as list comprehension and generators.
Ruby doesn’t have these.
b. However, Ruby gives you more freedom in how you write your code:
parenthesis are optional and blocks aren’t whitespace delimited like they are in
Python

4. Speed
a. Python generally executes code faster than Ruby

5. Applications
a. Python sees use in automating system administration and software
development, web application development, analyzing scientific data (with help of
numpy, scipy, and matplotlib modules), biostatisics, and teaching introductory
computer science and programming.
b. Ruby sees use in web application development, and general programming.

Topic 3: Lexical Conventions of Ruby
1. White Space
a. Whitespace characters such as spaces and tabs are generally ignored
in Ruby code, except when they appear in strings.

2. Line Endings
a. Ruby interprets semicolons and newline characters as the ending of a
statement.
However, if Ruby encounters operators, such as +, -, or backslash at the

end of a line, they indicate the continuation of a statement.
b. Be careful when dealing with expressions spanning multiple lines. Remember to
always append a ‘+’ at the end of a line if the expression is continued on the line

below it.
c.Exa=(4 +5) /lprints out 9
d.Exa=(4
+5) /lprints out5 [NOTE THE DIFFERENCE]

The reason this happens is because the expression is treated as a = (4; +5).
That is, it evaluates a “4” and then evaluates a “+5” (which then is the resultant
value, as it was the last evaluated).
e.Exa=(4+
5) /lprints out 9

3. Comments
a. Comments are lines of annotation within Ruby code that are ignored at runtime.
Comments extend from # to the end of the line.
b. Ex: # This is a comment
c. Ruby code can also contain embedded documents too. Embedded documents
extend from a line beginning with =begin to the next line beginning with -end.
=begin and =end must come at the beginning of a line.

d. Ex: =begin
This is an embedded document.
=end
4. |dentifiers

a. ldentifiers are names of variables, constants, and methods

b. Ruby distinguishes between identifiers consisting of uppercase characters
and those of lowercase characters.

c. ldentifier names may consist of alphanumeric characters and the underscore
character ().

d. You can distinguish a variable’s type by the initial character of its identifier

5. Reserved words
a. Ruby has a set of reserved words that may not be used as constant or
local variable names.
b. List of reserved words http://www.tutorialspoint.com/ruby/ruby quick guide.htm

Topic 4: Ruby is Object-Oriented

Ruby has classes. Classes hold data—in the form of variables and constants—and methods,
which are compact collections of code that help you perform operations on data. Classes can
inherit information from each other, but only one at a time. This allows you to reuse code—which
means you'll spend less time fixing or debugging code—and intermix the code through
inheritance.

http://www.tutorialspoint.com/ruby/ruby_quick_guide.htm

In Ruby, almost everything is an object. In fact, everything that Ruby can bind to a variable name
is an object.

Let’'s do an example.

class Hello
def howdy
greeting= “Hello, Matz!”
puts greeting
end
end

class Goodbye < Hello
def solong
greeting = “Goodbye, Matz!”
puts greeting
end
end

friendly = Goodbye.new
friendly.howdy
friendly.solong

If we run the code above, we will get back:
Hello, Matz!
Goodbye, Matz.

The reason is:

The Hello class defines the howdy method. The Goodbye class likewise contains the definition of
a method, solong. The Goodbye class also inherits what's in the Hello class (that's what the <
symbol is for). This means that the Goodbye class didn't have to redefine the howdy method. It
just inherited it.

friendly is an object (an instance of the Goodbye class). You can use the friendly object to call
both the howdy and solong methods, because it inherently knows about them. It knows about the
solong method because it is defined inside the Goodbye class, and it knows about the howdy
method because Goodbye inherited it from Hello.

Topic 5: Declaring Variables
1. Ruby doesn’t have type declarations. It just assigns values to variables
a. Example: months = 12

2. Local Variables:
a. Must start with a lowercase letter or with an underscore character
b. Example 1: alpha
c. Example 2: beta
d. When a local variable is defined inside a method or a loop, its scope is within the
method or loop where it was defined.

3. Instance Variables
a. An instance variable is a variable that is referenced via an instance of a class and
therefore belongs to a given object.
b. Itis always prefixed by a single at (@) sign
Example: @hello = 6170
d. You can access instance variables from outside of their class only by accessor
methods

o

4. Class Variables
a. A instances of a class. Only one copy of a
class variable exists for a given class.

b. Itis always prefixed by two at signs (@@)
c. You have to initialize a class variable before you use it
d. Example: @@times =0

5. Global Variables
a. Global variables are available globally to a program, inside any structure. Their
scope is the whole program.
b. Itis always prefixed by a dollar sign ($)
c. Example: $amount = “0.00”

Topic 6: Math
1. Converting Numbers
a. Integer(1.4) =>1 /I converts a floating-point number
b. Integer(“256”) => 256 /I converts a string
c. Integer(“0b100”) => 8 /I converts a binary number from string
d. Integer(?z)=>122 /I converts a character to ASCII

2. Basic Math Operators:
a. Use +,-,*,/for addition, subtraction, multiplication, and division

3.

4.

b. Use ** for exponent
c. Use % for modulo
Division and Truncation

a. 25/2=>12 /I Integer division always rounded down
b. 256.0/2=>125 /I Use a float as at least one operand to stop truncation
Ranges

a. The range operator .. means an inclusive range of numbers.
Example:1..10=(1,2,3,4,5,6,7, 8,9, 10)

b. The range operator . . . means a range of numbers excluding the last one
Example:1...10=(1,2,3,4,5,6,7,8,9)

c. Creating an array of a range of numbers:
(1..9)to.a =>[1,2,3,4,5,6,7,8,9] /[.to_a means “to array”

5. Useful Math methods

a. Absolute value: -40.abs => 40
b. Ceiling: 4.65.ceil => 5
c. Floor: 4.65.floor =>4
d. Rounding: 100.45.round => 100

Topic 7: String

1.

Basic string functions:

a. title = String.new /I sets title =
b. title.empty? /l returns boolean showing whether title is empty (*”)
c. title.length I returns length of title

Concatenating Strings

a. “Hello,” “ “ “Matz” “I” /I Creates “Hello, Matz!”

b. “Hello,” + ““ + “Matz” + “I” // Similarly, creates “Hello, Matz!”
c. “Hello, “ << “Matz!” /I Again, creates “Hello, Matz!”

d. “Hello, “.concat “Matz!” /I Also creates “Hello, Matz!”

Accessing Strings
a. line = “A horse! a horse! my kingdom for a horse!”
b. line[18, 23] => “my kingdom for a horse!” // 18 = starting index location,
/I 23 = number of letters to retrieve
c. line.index(“k”) =>21 // returns 1st index location where “k” appears

4. Comparisons

a. hay == nicolay /I Compares hay with nicolay. Returns false.
b. hay.eql? nicolay /l Compares hay with nicolay. Returns false.
c. ‘@ <=>% /I <=> is spaceship operator. Returns 0 if equal,

-1 if less than, and 1 if greater than

5. Inserting a String in a String
a. “Be carful .” .insert 6, “€” => “Be careful.” //Insert “e” at index 6
6. Substitute a Substring

a. “That’s alll fokes”.gsub “alll”, “all” => “That’s all folks”

7. Reversing a String:
a. “abcdefghijkl”.reverse => “lkjihgfedcba”

Topic 8: Arrays
1. The Array class is one of Ruby’s built-in classes. Ruby arrays can hold objects such
as String, Integer, Fixnum, Hash, Symbol, even other Array objects. Any object that
Ruby can create, it can hold in an array.
2. Adding elements to a Ruby array will cause it to automatically increase in size

3. A Ruby array can hold objects of all different types, not just one type

4. Basic Array Functions

a. months = Array.new /I Creates a new array []

b. months.empty? /I Returns boolean of whether months is empty
c. months.size /I Returns size of array

d. months.length /I Also returns size of array

e. months.clear /l Clears the array to []

f. months = Array.[] (“jan”, “feb”, “mar”, “dec”) //Creates array months

g. months =[nil, “Jan”, “Feb”, “Mar”, “Dec”] //Another way to create array

h. digits = Array(0 . . 9) /[Creates array [1, 2, 3,4, 5,6, 7, 8, 9]

5. lterating over Array
a. Sample = [“a”’ “b”, “C”, “d”, “Z”, 1, 5]
sample.each { |e| print e } /lprints out each element of sample

6. Accessing elements of array
a. months = [“Jan”, “Feb”, “Mar”, “Apr”’ “May”, “Jun”, “JUIH, “Aug”, “DeC"]

b. months[0] // returns Jan
c. months[-1] Il returns Dec
d. months[0, 2] // start index = 0, number of elements to extract = 2

/I Returns [“Jan”, “Feb”]
e. months.include? “Nov” //Returns whether “Nov” is present in months

7. Concatenation
a. Letq1, g2 be two arrays. You can concatenate both arrays into one array called
g3 using: g3 =q1 + g2
b. yrs =[2010, 2011, 2012]

yrs << 2013 /['yrs is now [2010, 2011, 2012, 2013]

8. Set Operations
a. Intersection (&) creates a new array, merging the common elements of two
arrays

but removing uncommon elements and duplicates
Example: year = semester1 & semester2

b. Difference (-) creates a new array, removing elements that appear in both arrays
Example: year = semester1 — semester2

c. Union (]) joins two arrays together, removing duplicates
Example: year = semester1 | semester2

9. Extracting Unique Elements

a. shopping_list = [“apples”, “oranges”, “apples”, “bananas”, “oranges”]
shopping_list.uniq! //Returns [“apples”, “oranges”, “bananas”]

10. Deletions
a. months = [“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”, “Jul”, “Aug”, “Dec”]
b. months.delete(“Jan”) //Deletes element “Jan” from array
c. months.delete_at(2) //Deletes element at index 2 from array

11. Iterations
a. Array has an each method that allows you to iterate over every element in the
array
b. Ex: months.each { |e| print e }/prints out every element inside months

12. Sorting an array of numbers
a. num_list=1[2,5,1,7, 23, 99, 14, 27]
b. num_list.sort! //sorts num_listto [1, 2, 5, 7, 14, 23, 27, 99]

Topic 9: Conditionals
1. If Statements
a. Example: if x==256
puts “x equals 256"
end

b. The operator && means “and”
Example: ifa==10 && b == 27...
Alternatively, you can do: ifa==10 and b == 27...

c. The operator || is used to represent “or”
Example: ifa == 10 || b ==27
Alternatively: if a == 10 or b == 27...

2. The Ternary Operator:

a. Example: label = length == 1? "argument" : "arguments"

b. This expression assigns a string value to label based on the value of length. If the
value of length is 1, then the string value “argument” will be assigned to label; but if
it is not true—that is, if length has a value other than 1—then the value of label will
be the string “arguments”.

3. While Loops
a. A while loop executes the code it contains as long as its conditional statement
remains true.
b. Ex: while i < breeds.size do
temp << breeds]i].capitalize
i+=1
end
c. You can break out of a while loop using the keyword break.
Ex: while i < breeds.size
temp << breeds]i].capitalize
break if temp]i] == “Arabian”
i+=1
end

4. For Loops
a. A for loop executes the body of the code a certain number of times
b. Ex:foriin1..5do

printi, ““
end /[Prints 12345
c. Note: You need to keep the “end” at the end of the loop. However, the “do” is
optional

d. Alternatively, you can use the times method:
10.times { | i | printi, ““} /IPrints 12345678910
e. Use the upto method to count up to a certain number from a starting num:
1.upto(10) { |i| printi, ““} //Prints12345678910
f. Use the downto method to count down to a certain num from a start num:
5.downto(1) { |i| printi, ““} //Prints 5432 1

Topic 10: Using Blocks
1. What are blocks?

a. A block consists of chunks of code

b. You assign a name to a block

c. The code in the block is always enclosed within braces { }

d. A block is always invoked from a function with the same name as that of the block.
This means that if you have a block with the name test, then you can use the
function test to invoke this block.

e. If you are familiar with python, a block in Ruby is similar to a lambda function
in python.
f. You invoke a block by using the yield statement
2. Syntax
a. Ex: block_name {
statement1
statement2

3. Executing a block
a. Again, you invoke a block by using a simple yield statement.
b. Example:
class Hello
def test
puts “you are in the method”
yield
puts “you are again back inside the method”
yield
end
test { puts “You are in the block” }
end
Executing the method test above will produce the following results:
You are in the method
You are in the block
You are again back inside the method
You are in the block

4. Passing parameters to the block
a. You can also pass parameters to the block with the yield statement.
b. Ex: class Hello
def test
yield 5
puts “You are in the method test”
yield 100
end
test {|i| puts “You are in block #{i}" }
end
Executing the method test above will generate the following output:
You are in block 5
You are in the method test
You are in the block 100
c. If you want to pass more than one parameters, simply append the extra

10

parameters to the end of yield (i.e. yield param1, paramz2, ... param100}

Topic 11: Embedding Ruby in HTML
1. <% Ruby Code %> The Ruby code between the delimiters is replaced with its

output.
Ex: <HTML>

<Body>
<% if item_quantity — item_count > 0 %>
 This item is in stock
<% end %>
</Body>
</HTML>

2. <%= Ruby Expression %> The Ruby expression between the delimiters is replaced
with its value.

Ex: <HTML>
<Body>
The value of x is : <%= x %>
</Body>
<HTML>
3. <%# Ruby Code %> The Ruby code between the delimiters is commented out and
ignored.

Next Tutorial: Sessions and Authentication

1"

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

