6.170 Tutorial 2 - Rails Basics

Prerequisites
1. RoR Installed and “Hello World” app from PO working.
2. Familiarity with “Separation of Concerns” and M-V-C Controller.
3. Some knowledge of databases is useful but not necessary.

Goals of this Tutorial
Get familiar with the some basics of development using Ruby on Rails.

Tutorial
Note: Read the README.rdoc file of your app. It has some very useful information for

developing and debugging Rails apps. You'll also find a lot of useful guides from
http://guides.rubyonrails.org/index.html.

You Must Have Already Figured:
1. What is Ruby on Rails?
a. A framework for rapid web-based development using the Ruby language
b. A community of passionate developers and contributors.
2. What features does it provide?
a. Clean Separation of concerns: Model-View-Controller.
Rapid web-based software development and testing.
Rapid DB Access and Migrations - without knowing many details of databases.
rake, a “make” system for Ruby for automating repetitive tasks.
Excellent software testing tools - details will be covered in a future recitation.
f. A vibrant community of developers and contributors who make life easy for you.
3. What is Heroku? What features does it provide?
a. A cool hosting service for RoR apps - makes deploying and running complete
RoR applications very easy.
b. Is based on Amazon EC2 infrastructure; allows dynamic provisioning of web
servers, and backend servers.
4. What is Git? GitHub?
a. Gitis an awesome source control system and GitHub is an online service for
easy creation and sharing of Git repositories.

©®ao0 o

Topic #0: Useful commands when developing rails applications
“rails” command provides many useful scripts for auto code generation etc. Examples:

$ rails [command] [args]
$ rails new <project>
$ rails generate <asset | model | resource etc.> <parameters>

http://guides.rubyonrails.org/index.html

S rails destroy <asset | model | resource etc.> <parameters>

“rake” is Ruby’s make system. Many useful development tasks come included as rake tasks
Examples:

S rake -T

$ rake db:setup; rake db:migrate; rake db:drop:all

S rake test; rake test:uncommitted

Note: Many common tasks come built-in with rails but you can always develop custom rake
tasks to automate your own work.

Topic #1: Routing in Rails
The material in this section is adapted from: http://quides.rubyonrails.org/routing.html
Also see documentation in your routes. rb file

Rails Router
1. Maps a URI to methods in controllers
a. Example: post "home/login" => "home#login"
2. Utility methods for generating paths and URLs - no hard-coding of URLs
3. Routing specified in config/routes.rb config file

Two kinds of Routing in Rails
1. Resourceful Routing: Shorthand for resources
2. Non-Resourceful Routing: For all other routing

Resourceful Routing Examples

At the command line in your app directory:
$ rails generate resource book title:string author:string

price:number

Check config/routes. rb file for:
resources :books

This creates seven different routes in your application, all mapping to the Books controller:

HTTP Verb Path action used for

GET /books index display a list of all
books

GET /books/new new return an HTML form
for creating a new
books

http://guides.rubyonrails.org/routing.html

POST /books create create a new book

GET /books/:id show display a specific
book

GET /books/:id/edit edit return an HTML form
for editing a book

PUT /books/:id update update a specific
book

DELETE /books/:id destroy delete a specific book

In your browser, go to http://localhost:3000/books/new You will see an error like :

Unknown action

The action 'new' could not be found for BooksController

Now edit the app/controllers/book controller.rb file so that it looks like:

class BooksController < ApplicationController

def index

render "index", :layout => false

end

def new

@time now = Time.now

render "new", :layout => false

end

end

Add file app/views/books/index.html.erb so thatitlooks like

<html>
<head>
</head>
<body>

<hl> Show a listing of all books here </hl>

http://localhost:3000/books/new

<%= "This is dynamically generated content at: #{Time.now}" %>
</body>
</html>

Add file app/views/books/new.html.erb so that it looks like:
<html>
<head>
</head>
<body>
<hl> Show form for creating a new book here </hl>
<%= "This is dynamically generated content at: #{@time now}" %>
</body>
</html>

Now http://localhost:3000/books and http://localhost:3000/books/new will work. Similarly, other
action methods like show update, edit destroy can be defined on Books controller and
corresponding view files written.

Notice in this example:
1. :render directive and its parameters
2. Rendering of appropriate view even when :render is not specified in “new” method
3. Dynamic content in view files and variable scope + visibility between controllers and
views

Examples of Non-Resourceful Routing

Static routes

post /home/login => “home#login”

post /library/catalog/update => “library/catalog#update”
get /home/index

Examples of routes with dynamic segments
match ":controller/" => ":controller#index"
http://localhost:3000/books will map to BooksController.index

match ":controller/:action"
http://localhost:3000/books/deleteall will map to BooksController.deleteall
Warning: This route will match every method in every controller. Use cautiously.

match ":controller/:action/:user id"
http://localhost:3000/books/checkout/10 will map to BooksController.checkout with
params|:user_id] = 10

http://localhost:3000/books/new
http://localhost:3000/books
http://localhost:3000/books�
http://localhost:3000/books/deleteall
http://localhost:3000/books/checkout/10

Note: You can mix static and dynamic segments in the match directive.

Helper Methods for Routing in Controllers and Views
resource_path, resource_url. For resource :books
e books path returns /books
e new_book_path returns /books/new
e edit_book_path(:id) returns /books/:id/edit (for instance, edit_book_path(10) returns
/books/10/edit)
e book_path(:id) returns /books/:id (for instance, book_path(10) returns /books/10)

Each of these helpers has a corresponding _url helper (such as books_url) which returns the
same path prefixed with the current host, port and path prefix.

Inspecting and Testing Routes
S rake routes

More Routing Concepts
Namespaces in Resourceful Routing
You can define namespaces for each of your resources as shown below:

namespace :admin do
resources :posts, :comments
end

Nested Resources
See http://guides.rubyonrails.org/routing.html#nested-resources

URL Redirection Using Routes
See http://guides.rubyonrails.org/routing.html

Route Globbing

match 'books/*other' => 'books#unknown'

This route would match “books/12” or “/books/long/path/to/12”, setting params[:other] to "12" or
"long/path/to/12".

Topic #2: Views and Client Side Assets
Also see: http://guides.rubyonrails.org/layouts and rendering.html

We will use “erb” format for dynamic views. You are welcome to use and experiment with other

http://guides.rubyonrails.org/layouts_and_rendering.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html#nested-resources

view technologies like HAML and choose the one which suits you best. But not all TAs may not
be able to help you if you encounter problems - only one of the TAs uses HAML regularly.

View Basics

Dynamic content specified in erb files via “<% %>" delimiters
<% [some ruby code] %>

<%= [some_ ruby code which will be printed] %>

Note: Only Instance scoped variables from controller available to views

Examples:
Store the current time in “now”:
<% now = Time.now %>

Output the current time:
<%= Time.now %>

Print a HTML table of all books

<table>

<% @books.each.do |book]| %>

<tr>
<td><%= book.title%></td>
<td><%= book.author%$></td>
<td><%= book.price%></td>

</tr>

% end %>

</table>

Note: @books must be previously initialized - preferably in the controller. Otherwise it will be nil

and you will get an error

Output a HTML form for entering book information:
%= form for @book do |b| %>

<p>

<%= b.label :title%>

<%= b.text field :title%>
</p>

<p>

<%= b.label :price%>

<%= b.text field :price%>
</p>

<p>

<%= b.label :author%>

<%= b.text field :author%>

</p>
% end %>

Note:
1. Form automatically generated with the correct post URL for resource “book”
2. HTML Labels and Text Fields generated via corresponding tags. You can also use pure
HTML
3. Tags available for other common HTML elements; provide convenient features like
validation etc.

Layout Templates

Example Layout:
<!DOCTYPE html>

<html>
<head>

<!-- include scripts and stylesheets here -->
</head>
<body>

<div id="header”>

<!-- header goes here -- >
</div>

<div id="main-body”>
<%= yield %>

</div>
<div id="footer”>
<!-- header goes here -- >
</div>
</body>
</html>

—_—

Each view can have a layout template, including no layout.
Typically used to create a template for header and footer of pages - then each view
focuses on only its part
Layouts are in app/views/layouts; Default layout is “application.html.erb”
Include your views using <%= yield %> directive in layout
Controller wide layouts possible.
render directive also can take a layout parameter
a. render “new”, :layout => :home page

N

o0k w

b. render “new”, :layout => false

View Partials

Including repeated HTML code

Client Side Assets
Details of CSS, Javascript, and other client side assets will be covered in a later recitation.

Topic #3: Controllers

Controllers help isolate presentation layer from the data layer - separation of concerns

Using this - you can use the same code to develop a web based app, a mobile based app, or a
some other view technology without changing much of the underlying code. Similarly you can
use any data store - relational databases, flat files, etc. and switch between them without
changing any of the view code.

Default/Base Controller: ApplicationController (application_controller.rb)

New controllers are created using:
S rails generate controller <name> <actionl> <action2> etc.

Lets look at books_controller.rb
class BooksController < ApplicationController

This will use “app/views/layouts/book layouts.html.erb” as the
layout for all views in this controller, unless overriden in a
method.

layout :book layout

def index
render "index", :layout => false
end

def new

@time now = Time.now

render "new", :layout => false
end
end

You can start adding new methods which will perform actions. For example:

def checkout
This is pseudo code
@book = Book.find(params|[:book id])
if (Q@book.available?)
@book.checkout (params[:user id])

msg “Book checked out”

else

msg “Book not available for checkout”
end
render “checkout”, :layout => false

end

Some useful objects available to you in the controllers are:
params: A hash of HTTP params which came with the request.
request: The HTTP request object as a hash

session: The session object as a hash

Some useful directives in controllers:

render “view”, :layout => [layout name | false]

render :nothing => true ## Useful for async actions for which you do
not need ack

render :inline => “<%= Time.now %>” ## I’ve never used this form
render :text => “OK” ## Useful for AJAX calls

render :json => @books

render :xml => @books

render :js => “<js code here>"” ## Not a good practice

redirect to “/relative/path/to/view”

Note: Any instance variables that you require in the view must be set up in the current action
before calling render.

Topic #4: Data Access in Rails (“Model” part of MVC)

http://quides.rubyonrails.org/active record querying.html
http://guides.rubyonrails.org/migrations.html

ActiveRecord is a data interface/access layer: allows you to store/retrieve/query a database
without having to learn and worry about SQL. All you need to know is the corresponding model
class in ruby and rails takes care of the SQL level details of interaction with the database!

Generating a Model
$ rails generate model library name:string address:string
$ 1invoke active record

S create db/migrate/20130211132022 create libraries.rb
$ create app/models/library.rb
S invoke test unit

http://guides.rubyonrails.org/active_record_querying.html
http://guides.rubyonrails.org/migrations.html

$ create test/unit/library test.rb
S create test/fixtures/libraries.yml

This command generate the model class (app/models/library.rb), a migration script to create the
corresponding table in the database (db/migrate/xxx_create_libraries.rb), and some files to run
tests.

app/models/library.rb:

class Library < ActiveRecord: :Base
attr accessible :address, :name
end

Note:

1. Library class extends from ActiveRecord: : Base which provides many utility methods
for interacting with Model objects. (as you will see)

2. attr accessible directive specifies the accessible attributes of the model via getters
and setters, i.e. “library.name”, “library.address” can be used on the LHS or RHS of an
assignment expression.

3. Many more useful directives available.

db/migrate/20130211132022 create libraries.rb:
class Createlibraries < ActiveRecord::Migration
def change
create table :libraries do |t|
t.string :name
t.string :address

t.timestamps
end
end
end

Note:
1. This migration script creates the database table.
2. Automatically adds an “id” field to the model (not shown) and a timestamps field to hold
the last updated timestamp for each record.

Creating the Database Table
$ rake db:migrate

10

Simple operations on the Library model
You can now start using this model in your code. Examples are shown below:

Return a library object with id 10
@library = Library.find(10)

Create a new library object and save it to the database

lib = Library.new({:name => “Hayden”, :address => “100 Memorial
Drive”})

lib.save ()

Retrieve a library object with name = “Hayden”

library = Library.find by name (“Hayden”)
More Fun Details of the Model

Enforcing Referential Constraints:
In Book class: belongs to :library
In Library class: has many :books

Retrieving multiple objects:
Use Model.xxx where xxx = where, select, group, having, order, limit,
join, order

Topic #5: Some Useful Rails Configuration Files

1. boot.rb, application.rb, environment.rb
2. database.yml

Topic #6: Debugging Rails Apps

Which IDE should use for development?
Your TAs are familiar with the following:
e Sublime + Vi editor with command line
e Emacs Editor with command line
e RubyMine (30 day trial)

Others have used
e Aptana RadRails

For more of debugging, see: http://guides.rubyonrails.org/debugging rails_applications.html

1"

http://guides.rubyonrails.org/debugging_rails_applications.html

Topic #7: Some useful heroku commands
You'll only need to specify --app <app name> if you're not in your app directory:

$ heroku logs [--app <app_ name>]
For viewing application logs on heroku (use $ heroku logs —--tail to stream the logs live)

$ heroku logs [--app <app_name>]
For viewing application logs on heroku

$ heroku config [--app <app name>]
To configure your environment variables. Access to heroku services (mail server, data stores,
social plugins etc) is usually via environment variables

$ heroku sgl [--app <app name>]
Provides a sql console to your database

$ heroku run rake db:create [--app <app_name>]
$ heroku run rake db:migrate [--app <app name>]
$ heroku run 1ls -las [--app <app name>]

$ heroku run ssh [--app <app name>]

Runs the specified command. Warning: Use cautiously!

Next Tutorialp
Details of the Ruby programming language

12

MIT OpenCourseWare
http://ocw.mit.edu

6.170 Software Studio
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

